在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=ax2-2ax+c(a≠0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),AB=4,與y軸交于點(diǎn)C,且過(guò)點(diǎn)(2,3).
(1)求此二次函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,連接CD、CB,問(wèn)拋物線上是否存在點(diǎn)P,使得∠PBC+∠BDC=90°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)K為拋物線上C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、K、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

解:(1)拋物線的對(duì)稱軸:x=-=-=1,且AB=4,則 A(-1,0)、B(3,0);
再代入點(diǎn)(2,3)后,可得:
,解得
∴二次函數(shù)的表達(dá)式:y=-x2+2x+3.

(2)由(1)知:y=-x2+2x+3=-(x-1)2+4,則 D(1,4);
BC2=18、CD2=2、BD2=20,∴BC2+CD2=BD2,即△BCD是直角三角形,且DC⊥BC.
∴∠BDC+∠DBC=90°,即點(diǎn)D符合點(diǎn)P的要求,P1(1,4).
延長(zhǎng)DC至E,使得DC=CE,則△BDE是等腰三角形,且∠DBC=∠EBC,則直線BE與拋物線的交點(diǎn)也符合點(diǎn)P的要求(B點(diǎn)除外)
通過(guò)圖示,不難看出 點(diǎn)D、E關(guān)于點(diǎn)C對(duì)稱,則 E(-1,2),設(shè)直線BE:y=kx+b,則有:
,解得
∴直線BE:y=-x+,聯(lián)立拋物線的解析式后,得:
,解得(舍)、
∴P2(-);
綜上,存在符合條件的點(diǎn)P,且坐標(biāo)為(1,4)、(-,).

(3)易知點(diǎn)K(2,3);
由題意,A、F都在x軸上,根據(jù)平行四邊形的特點(diǎn)不難看出點(diǎn)G的縱坐標(biāo)為3或-3;
當(dāng)yG=3時(shí),-x2+2x+3=3,解得 x=0或2,
∴G點(diǎn)坐標(biāo)為(0,3),
此時(shí)點(diǎn)F的坐標(biāo)為(-1-2,0)或(-1+2,0),即(-3,0)、(1,0);
當(dāng)yG=-3時(shí),-x2+2x+3=-3,解得 x=1±
∴G點(diǎn)坐標(biāo)為(1+,-3)或(1-,-3),
此時(shí)點(diǎn)F的坐標(biāo)為(4+,0)、(4-,0);
綜上,有四個(gè)符合條件的點(diǎn)F,且坐標(biāo)為(-3,0)、(1,0)、(4+,0)、(4-,0).
分析:(1)拋物線的解析式中,二次項(xiàng)和一次項(xiàng)系數(shù)都含有相同的未知數(shù),可先確定拋物線的對(duì)稱軸,而AB的長(zhǎng)已知,可據(jù)此確定點(diǎn)A、B的坐標(biāo);再根據(jù)已知點(diǎn)(2,3)可求出拋物線的解析式.
(2)首先求出點(diǎn)B、C、D三點(diǎn)坐標(biāo),此時(shí)發(fā)現(xiàn)△BDC恰好是直角三角形,且DC⊥BC,那么點(diǎn)D正好符合點(diǎn)P的要求;顯然在直線BC下方還有一個(gè)符合條件的點(diǎn)P,可將點(diǎn)B視作頂角頂點(diǎn)、BD為腰作一個(gè)等腰三角形(此時(shí)可在直線BC下方作出一個(gè)與∠DBC相等的角),先確定第三個(gè)頂點(diǎn)的坐標(biāo),求出此點(diǎn)所在腰的直線解析式后聯(lián)立拋物線即可求出另一點(diǎn)P.
(3)根據(jù)拋物線的對(duì)稱性,不難確定點(diǎn)K的坐標(biāo).由題意,A、F都在x軸上,所以無(wú)論AF是邊還是對(duì)角線,點(diǎn)G的縱坐標(biāo)必為3或-3(與K相同或互為相反數(shù)),先代入拋物線確定出點(diǎn)G的坐標(biāo)后,再根據(jù)A、K的坐標(biāo)和平行四邊形的特點(diǎn)確定點(diǎn)F的坐標(biāo).
點(diǎn)評(píng):此題主要考查的知識(shí)點(diǎn)有:利用待定系數(shù)法確定函數(shù)解析式、直角三角形與等腰三角形的判定和性質(zhì)以及平行四邊形的判定和性質(zhì);(2)題中,判斷出△BCD的形狀是解題的關(guān)鍵;最后一題需要分類進(jìn)行討論,以免出現(xiàn)漏解的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=-
4
9
(x-2)2
+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
2
5
5

(1)求此拋物線的函數(shù)表達(dá)式;
(2)過(guò)H的直線與y軸相交于點(diǎn)P,過(guò)O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若
HE
HF
=
1
2
時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的精英家教網(wǎng)直線QG的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2-2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交精英家教網(wǎng)點(diǎn)B在A點(diǎn)的右側(cè);交y軸于(0,-3).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為C,拋物線上一點(diǎn)D的坐標(biāo)為(-3,12),在x軸上是否存在一點(diǎn)P,使以點(diǎn)P、B、C為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系xOy中,直線MN分別與x軸正半軸、y軸正半軸交于點(diǎn)M、N,且OM=6cm,∠OMN=30°,等邊△ABC的頂點(diǎn)B與原點(diǎn)O重合,BC邊落在x軸的正半軸上,點(diǎn)A恰好落在線段MN上,如圖2,將等邊△ABC從圖1的位置沿x軸正方向以1cm/s的速度平移,邊AB、AC分別與線段MN交于點(diǎn)E、F,在△ABC平移的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿折線B→A→C運(yùn)動(dòng),當(dāng)點(diǎn)P達(dá)到點(diǎn)C時(shí),點(diǎn)P停止運(yùn)動(dòng),△ABC也隨之停止平移.設(shè)△ABC平移時(shí)間為t(s),△PEF的面積為S(cm2).
(1)求等邊△ABC的邊長(zhǎng);
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)點(diǎn)P沿折線B→A→C運(yùn)動(dòng)的過(guò)程中,是否在某一時(shí)刻,使△PEF為等腰三角形?若存在,求出此時(shí)t值;若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)如圖,已知在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c(a>0)與x軸相交于A(-1,0),B(3,0)兩點(diǎn),對(duì)稱軸l與x軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,且∠ADC的正切值為
12

(1)求頂點(diǎn)D的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)F點(diǎn)是拋物線上的一點(diǎn),且位于第一象限,連接AF,若∠FAC=∠ADC,求F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長(zhǎng)度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).
(1)取BC中點(diǎn)D,問(wèn)OD+DA是否發(fā)生改變,若會(huì),說(shuō)明理由;若不會(huì),求出OD+DA;
(2)你認(rèn)為OA的長(zhǎng)度是否會(huì)發(fā)生變化?若變化,那么OA最長(zhǎng)是多少?OA最長(zhǎng)時(shí)四邊形OBAC是怎樣的四邊形?并說(shuō)明理由;
(3)填空:當(dāng)OA最長(zhǎng)時(shí)A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

同步練習(xí)冊(cè)答案