某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元.則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?
(1))根據(jù)題意可知y=﹣10(x﹣5.5)2+2402.5,0<x≤15;
(2)當(dāng)售價定為每件55或56元,每個月的利潤最大,最大的月利潤是2400元;
(3)當(dāng)售價不低于51元且不高于60元且為整數(shù)時,每個月的利潤不低于2200元.
解析試題分析:(1)根據(jù)題意可知y=﹣10(x﹣5.5)2+2402.5,0<x≤15;
(2)當(dāng)x=5.5時y有最大值.
(3)設(shè)y=2200,解得x的值.然后分情況討論解.
試題解析:(1)∵設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
∴上漲后每件商品的利潤為(10+x)元,每月能銷售(210﹣10x)件商品;
由題意得:y=(210﹣10x)(50+x﹣40)
=﹣10x2+110x+2100
=﹣10(x﹣5.5)2+2402.5(0<x≤15且x為整數(shù));
(2)∵a=﹣10<0,
∴當(dāng)x=5.5時,y有最大值2402.5.
∵0<x≤15,且x為整數(shù),
當(dāng)x=5時,50+x=55,y=2400(元),當(dāng)x=6時,50+x=56,y=2400(元)
∴當(dāng)售價定為每件55或56元,每個月的利潤最大,最大的月利潤是2400元;
(3)當(dāng)y=2200時,﹣10x2+110x+2100=2200,
解得:x1=1,x2=10.
∴當(dāng)x=1時,50+x=51,當(dāng)x=10時,50+x=60.
∴當(dāng)售價定為每件51或60元,每個月的利潤為2200元.
當(dāng)售價不低于51或60元,每個月的利潤為2200元.
當(dāng)售價不低于51元且不高于60元且為整數(shù)時,每個月的利潤不低于2200元(或當(dāng)售價分別為51,52,53,54,55,56,57,58,59,60元時,每個月的利潤不低于2200元).
考點:二次函數(shù)的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)中,對稱軸平行于y軸的拋物線經(jīng)過原點O,其頂點坐標(biāo)為(3,);Rt△ABC的直角邊BC在x軸上,直角頂點C的坐標(biāo)為(,0),且BC=5,AC=3(如圖1).
圖1 圖2
(1)求出該拋物線的解析式;
(2)將Rt△ABC沿x軸向右平移,當(dāng)點A落在(1)中所求拋物線上時Rt△ABC停止移動.D(0,4)為y軸上一點,設(shè)點B的橫坐標(biāo)為m,△DAB的面積為s.
①分別求出點B位于原點左側(cè)、右側(cè)(含原點O)時,s與m之間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量m的取值范圍(可在圖1、圖2中畫出探求);
②當(dāng)點B位于原點左側(cè)時,是否存在實數(shù)m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3的頂點為M(2,﹣1),交x軸與A、B兩點,交y軸于點C,其中點B的坐標(biāo)為(3,0).
(1)求該拋物線的解析式;
(2)設(shè)經(jīng)過點C的直線與該拋物線的另一個交點為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,拋物線過點,且與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.點D的坐標(biāo)為,連接CA,CB,CD.
(1)求證:;
(2)是第一象限內(nèi)拋物線上的一個動點,連接DP交BC于點E.
①當(dāng)△BDE是等腰三角形時,直接寫出點E的坐標(biāo);
②連接CP,當(dāng)△CDP的面積最大時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商店進了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價5元出售,其銷量將減少100件。
(1)求售價為70元時的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價x(元)之間的函數(shù)關(guān)系,并求售價為多少元時獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知,二次函數(shù)的圖像經(jīng)過點和點B,其中點B在第一象限,且OA=OB,cot∠BAO=2.
(1)求點B的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)過點B作直線BC平行于x軸,直線BC與二次函數(shù)圖像的另一個交點為C,聯(lián)結(jié)AC,如果點P在x軸上,且△ABC和△PAB相似,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2–kx+k–1(k>2).
(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標(biāo):
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x | … | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 8 | 3 | 0 | -1 | 0 | 3 | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com