已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當(dāng)點P在線段AB上時,求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.
解:(1)證明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C。
在△APQ與△ABC中,∵∠APQ=∠C,∠A=∠A,
∴△APQ∽△ABC。
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5。
∵∠BPQ為鈍角,∴當(dāng)△PQB為等腰三角形時,只可能是PB=PQ。
(I)當(dāng)點P在線段AB上時,如題圖1所示,
由(1)可知,△APQ∽△ABC,
∴,即,解得:。
∴。
(II)當(dāng)點P在線段AB的延長線上時,如題圖2所示,
∵BP=BQ,∴∠BQP=∠P。
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A!郆Q=AB。
∴AB=BP,點B為線段AB中點。
∴AP=2AB=2×3=6。
綜上所述,當(dāng)△PQB為等腰三角形時,AP的長為或6。
解析試題分析:(1)由兩對角相等(∠APQ=∠C,∠A=∠A),證明△APQ∽△ABC。
(2)當(dāng)△PQB為等腰三角形時,有兩種情況,需要分類討論.
(I)當(dāng)點P在線段AB上時,如題圖1所示.由三角形相似(△APQ∽△ABC)關(guān)系計算AP的長;
(II)當(dāng)點P在線段AB的延長線上時,如題圖2所示.利用角之間的關(guān)系,證明點B為線段AP的中點,從而可以求出AP。
科目:初中數(shù)學(xué) 來源: 題型:解答題
觀察計算:
當(dāng),時,與的大小關(guān)系是_________________.
當(dāng),時,與的大小關(guān)系是_________________.
探究證明:
如圖所示,為圓O的內(nèi)接三角形,為直徑,過C作于D,設(shè),BD=b.
(1)分別用表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論:
根據(jù)上面的觀察計算、探究證明,你能得出與的大小關(guān)系是:______________.
實踐應(yīng)用:
要制作面積為4平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉(zhuǎn)135º,得到矩形EFGH(點E與O重合).
(1)若GH交y軸于點M,則∠FOM= ,OM= .
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當(dāng)0<t≤4-2時,S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一天晚上,黎明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當(dāng)李明走到點A處時,張龍測得李明直立時身高AM與影子長AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊長為AO=6,AC=8,
(1)如圖①,E是OB的中點,將△AOE沿AE折疊后得到△AFE,點F在矩形AOBC內(nèi)部,延長AF交BC于點G.求點G的坐標(biāo);
(2)定義:若以不在同一直線上的三點中的一點為圓心的圓恰好過另外兩個點,這樣的圓叫做黃金圓.如圖②,動點P以每秒2個單位的速度由點C向點A沿線段CA運動,同時點Q以每秒4個單位的速度由點O向點C沿線段OC運動;求:當(dāng) PQC三點恰好構(gòu)成黃金圓時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知,如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點P從點A出發(fā),沿AD方向勻速運動,速度為3cm/s;點Q從點C出發(fā),沿CD方向勻速運動,速度為1cm/s,連接并延長QP交BA的延長線于點M,過M作MN⊥BC,垂足是N,設(shè)運動時間為t(s)(0<t<1),解答下列問題:
(1)當(dāng)t為何值時,四邊形AQDM是平行四邊形?
(2)設(shè)四邊形ANPM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使四邊形ANPM的面積是ABCD面積的一半,若存在,求出相應(yīng)的t值,若不存在,說明理由
(4)連接AC,是否存在某一時刻t,使NP與AC的交點把線段AC分成的兩部分?若存在,求出相應(yīng)的t值,若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com