【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點B、D在反比例函數(shù)y═(k>0)的圖象上,對角線AC與BD相交于坐標(biāo)原點O,若點A(﹣1,2),菱形的邊長為5,則k的值是( )
A.4B.8C.12D.16
【答案】B
【解析】
根據(jù)菱形的性質(zhì)得到AC⊥BD,根據(jù)勾股定理得到OA= ,OD= = ,求得直線AC的解析式為y=﹣2x,求得BD的解析式為y=2x,設(shè)D(a,2a),根據(jù)勾股定理即可得到結(jié)論.
解:∵四邊形ABCD是菱形,
∴AC⊥BD,
∵點A(﹣1,2),
∴OA=,
∵菱形的邊長為5,
∴AD=5,
∴OD= =,
∵對角線AC與BD相交于坐標(biāo)原點O,
∴直線AC的解析式為y=﹣2x,
∴BD的解析式為y=2x,
設(shè)D(a,2a),
∴ ,
∴a=2(負(fù)值舍去),
∴D(2,4),
∵D在反比例函數(shù)y=(k>0)的圖象上,
∴k=2×4=8,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:兩直角邊比為1:2的直角三角形叫做和合三角形.
(1)如圖1,△ABC中,∠C= ,AC=3,BC=4,AD平分∠CAB交BC于點D,說明△ACD是和合三角形;
(2)如圖2,和合△ABC中,∠C= ,AC= ,點D是邊AB中點,點E是邊AC上一動點,在直線DE下方構(gòu)造矩形DEFG,使直線FG始終經(jīng)過BC中點M,已知△ABC面積為4,求矩形DEFG的面積;
(3)如圖3,扇形OAB中,∠AOB= ,OA=2.以點O為原點,OA,OB所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,點P是 一動點,點Q是直線y=3上一動點,當(dāng)△OPQ是和合三角形時,求點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生的體質(zhì)健康狀況,隨機抽取了該校九年級學(xué)生的10%進(jìn)行測試,將這些學(xué)生的測試成績(x)分為四個等級:優(yōu)秀;良好;及格;不及格,并繪制成以下兩幅統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是______;
(2)計算所抽取學(xué)生測試成績的平均分;
(3)若不及格學(xué)生的人數(shù)為2人,請估算出該校九年級學(xué)生中優(yōu)秀等級的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DCE都是等邊三角形.
探究發(fā)現(xiàn)
(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.
拓展運用
(2)若B、C、E三點不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.
(3)若B、C、E三點在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是DA、BC延長線上的點,且∠ABE=∠CDF.
求證:(1)△ABE≌△CDF;
(2)四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線的頂點是A(1,3),將OA繞點O逆時針旋轉(zhuǎn)后得到OB,點B恰好在拋物線上,OB與拋物線的對稱軸交于點C.
(1)求拋物線的解析式;
(2)P是線段AC上一動點,且不與點A,C重合,過點P作平行于x軸的直線,與的邊分別交于M,N兩點,將以直線MN為對稱軸翻折,得到.
設(shè)點P的縱坐標(biāo)為m.
①當(dāng)在內(nèi)部時,求m的取值范圍;
②是否存在點P,使,若存在,求出滿足m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對網(wǎng)上在線學(xué)習(xí)效果的滿意度,某校設(shè)置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機抽查了部分學(xué)生,要求每名學(xué)生都只選其中的一項,并將抽查結(jié)果繪制成如圖統(tǒng)計圖(不完整).
請根據(jù)圖中信息解答下列問題:
(1)求被抽查的學(xué)生人數(shù),并補全條形統(tǒng)計圖;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)
(2)求扇形統(tǒng)計圖中表示“滿意”的扇形的圓心角度數(shù);
(3)若該校共有1000名學(xué)生參與網(wǎng)上在線學(xué)習(xí),根據(jù)抽查結(jié)果,試估計該校對學(xué)習(xí)效果的滿意度是“非常滿意”或“滿意”的學(xué)生共有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com