已知△ABC中,邊BC的長與BC邊上的高的和為20.
(1)寫出△ABC的面積y與BC的長x之間的函數(shù)關系式,并求出面積為48時BC的長;
(2)當BC多長時,△ABC的面積最大?最大面積是多少?
(3)當△ABC面積最大時,是否存在其周長最小的情形?如果存在,請說出理由,并求出其最小周長;如果不存在,請給予說明.
解:(1)由題意,得。
當y=48時,=48,解得:x1=12,x2=8。
∴面積為48時BC的長為12或8。
(2)∵,
∴當x=10時,y最大=50。
(3)△ABC面積最大時,△ABC的周長存在最小的情形。理由如下:
由(2)可知△ABC的面積最大時,BC=10,BC邊上的高也為10。
過點A作直線L平行于BC,作點B關于直線L的對稱點B′,連接B′C 交直線L于點A′,連接A′B,AB′,

則由對稱性得:A′B′=A′B,AB′=AB,
∴A′B+A′C=A′B′+A′C=B′C,
當點A不在線段B′C上時,則由三角形三邊關系可得:
△ABC的周=AB+AC+BC=AB′+AC+BC>B′C+BC,
當點A在線段B′C上時,即點A與A′重合,這時
△ABC的周長=AB+AC+BC=A′B′+A′C+BC=B′C+BC,
因此當點A與A′重合時,△ABC的周長最小。
這時由作法可知:BB′=20,∴。
∴△ABC的周長= +10。
因此當△ABC面積最大時,存在其周長最小的情形,最小周長為+10。

試題分析:(1)先表示出BC邊上的高,再根據(jù)三角形的面積公式就可以表示出表示y與x之間的函數(shù)關系式,當y=48時代入解析式就可以求出其值;
(2)將(1)的解析式轉化為頂點式就可以求出最大值。
(3)由(2)可知△ABC的面積最大時,BC=10,BC邊上的高也為10過點A作直線L平行于BC,作點B關于直線L的對稱點B′,連接B′C 交直線L于點A′,再連接A′B,AB′,根據(jù)軸對稱的性質(zhì)及三角形的周長公式就可以求出周長的最小值。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點O是原點,矩形OABC的頂點A在x軸的正半軸上,頂點C在y的正半軸上,點B的坐標是(5,3),拋物線經(jīng)過A、C兩點,與x軸的另一個交點是點D,連接BD.

(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標;
(3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當點P到達點B時,P、Q同時停止運動,設運動的時間為t秒,當t為何值時,以D、P、Q為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(       ,       );
依此類推第n條拋物線yn的頂點坐標為(       ,       );
所有拋物線的頂點坐標滿足的函數(shù)關系是       
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A     ,k=     ;
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(點A在點B的左邊),交y軸于點C,且經(jīng)過點(b-2,2b2-5b-1).

(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點,交y軸于另一點D,求點M的坐標;
(3)連接AM、DM,將∠AMD繞點M順時針旋轉,兩邊MA、MD與x軸、y軸分別交于點E、F,若△DMF為等腰三角形,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如下圖是一副眼鏡鏡片下半部分輪廓對應的兩條拋物線關于軸對稱.軸,,最低點軸上,高,則右輪廓線所在拋物線的函數(shù)解析式為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,二次函數(shù)的圖象開口向上,對稱軸為直線x=1,圖象經(jīng)過(3,0),下列結論中,正確的一項是【   】
A.a(chǎn)bc<0B.2a+b<0C.a(chǎn)-b+c<0D.4ac-b2<0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設運動時間為t秒.

(1)當t=     時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關系式;
②當s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

同步練習冊答案