如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)請(qǐng)你判斷AD與CD是否垂直?并說明理由;
(2)求四邊形ABCD的面積.

解:(1)連接AC.
∵AB=20,BC=15,∠B=90°,
∴由勾股定理,得AC2=202+152=625.
又∵CD=7,AD=24,
∴CD2十AD2=625,
∴AC2=CD2+AD2,
∴∠D=90°,
∴AD與CD垂直;

(2)四邊形ABCD的面積=AD•DC+AB•BC
=×24×7+×20×15
=224.
分析:(1)AD與CD垂直,連接AC.首先根據(jù)勾股定理求得AC的長(zhǎng),再根據(jù)勾股定理的逆定理求得∠D=90°即可;
(2)由題意可知四邊形ABCD的面積等于兩個(gè)直角三角形的面積問題的解.
點(diǎn)評(píng):考查了勾股定理和勾股定理的逆定理,通過作輔助線可將一般的四邊形轉(zhuǎn)化為兩個(gè)直角三角形,使面積的求解過程變得簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案