在△ABC中,AB=5cm,AC=4cm,BC=3cm,以AC為直徑的⊙交AB于D,則DC=   
【答案】分析:連DC,因為AB=5cm,AC=4cm,BC=3cm,所以△ABC是以AB為斜邊的直角三角形;由AC為⊙O的直徑,得∠ADC=90°,即CD為斜邊上的高,所以有S△ABC=AC•BC=CD•AB,通過計算即可得到DC的長.
解答:解:連DC,如圖,
∵AB=5cm,AC=4cm,BC=3cm,
∴△ABC是以AB為斜邊的直角三角形;
∵AC為⊙O的直徑,
∴∠ADC=90°,即CD為斜邊上的高,
∴S△ABC=AC•BC=CD•AB,即4×3=CD×5,
∴CD=cm.
故答案為cm.
點(diǎn)評:本題考查了圓周角定理.在同圓或等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.
同時考查了勾股定理的逆定理和三角形的面積公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案