【題目】試找出如圖所示的每個(gè)正多邊形的對(duì)稱(chēng)軸的條數(shù),并填入表格中.

正多邊形的邊數(shù)

3

4

5

6

7

8

對(duì)稱(chēng)軸的條數(shù)

根據(jù)上表,請(qǐng)就一個(gè)正n邊形對(duì)稱(chēng)軸的條數(shù)作一猜想.

【答案】3,4,5,6,7,8 n

【解析】

正多變形都是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸為任意邊上的垂直平分線.

正三角形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有3條邊,故有3條對(duì)稱(chēng)軸;

正四邊形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有4條邊,故有4條對(duì)稱(chēng)軸;

正五邊形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有5條邊,故有5條對(duì)稱(chēng)軸;

正六邊形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有6條邊,故有6條對(duì)稱(chēng)軸;

正七邊形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有7條邊,故有7條對(duì)稱(chēng)軸;

正八邊形每條邊上的垂直平分線都是對(duì)稱(chēng)軸,有8條邊,故有8條對(duì)稱(chēng)軸;

由以上規(guī)律可得:正n邊形,就有n條對(duì)稱(chēng)軸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC沿DE、EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下是某省2010年教育發(fā)展情況有關(guān)數(shù)據(jù):

全省共有各級(jí)各類(lèi)學(xué)校25000所,其中小學(xué)12500所,初中2000所,高中450所,其它學(xué)校10050所;全省共有在校學(xué)生995萬(wàn)人,其中小學(xué)440萬(wàn)人,初中200萬(wàn)人,高中75萬(wàn)人,其它280萬(wàn)人;全省共有在職教師48萬(wàn)人,其中小學(xué)20萬(wàn)人,初中12萬(wàn)人,高5萬(wàn)人,其它11萬(wàn)人.

請(qǐng)將上述資料中的數(shù)據(jù)按下列步驟進(jìn)行統(tǒng)計(jì)分析.

1)整理數(shù)據(jù):請(qǐng)?jiān)O(shè)計(jì)一個(gè)統(tǒng)計(jì)表,將以上數(shù)據(jù)填入表格中.

2)描述數(shù)據(jù):下圖是描述全省各級(jí)各類(lèi)學(xué)校數(shù)的扇形統(tǒng)計(jì)圖,請(qǐng)將它補(bǔ)充完整.

3)分析數(shù)據(jù):

分析統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),小學(xué)、初中、高中三個(gè)學(xué)段的師生比,最小的是哪個(gè)學(xué)段?請(qǐng)直接寫(xiě)出.(師生比=在職教師數(shù)在校學(xué)生數(shù))

根據(jù)統(tǒng)計(jì)表中的相關(guān)數(shù)據(jù),你還能從其它角度分析得出什么結(jié)論嗎?(寫(xiě)出一個(gè)即可)

從扇形統(tǒng)計(jì)圖中,你得出什么結(jié)論?(寫(xiě)出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 甲、乙兩名車(chē)工都加工要求尺寸是直徑10毫米的零件.從他們所生產(chǎn)的零件中,各取5件,測(cè)得直徑如下(單位:毫米)

甲:10.05, 10.02,9.97,9.95,10.01

乙:9.99,10.02,10.02,9.98,10.01

分別計(jì)算兩組數(shù)據(jù)的標(biāo)準(zhǔn)差(精確到0.01),說(shuō)明在尺寸符合規(guī)格方面,誰(shuí)做得較好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)廠去年每個(gè)季度汽車(chē)銷(xiāo)售數(shù)量(輛)占當(dāng)季汽車(chē)產(chǎn)量(輛)百分比的統(tǒng)計(jì)圖如圖所示.根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)若第一季度的汽車(chē)銷(xiāo)售量為2100輛,求該季的汽車(chē)產(chǎn)量;

(2)圓圓同學(xué)說(shuō):因?yàn)榈诙,第三這兩個(gè)季度汽車(chē)銷(xiāo)售數(shù)量占當(dāng)季汽車(chē)產(chǎn)量是從75%降到50%,所以第二季度的汽車(chē)產(chǎn)量一定高于第三季度的汽車(chē)產(chǎn)量,你覺(jué)得圓圓說(shuō)的對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.

(1)已知甲隊(duì)在初賽階段的積分為分,甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);

(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.

(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請(qǐng)你探索在圖2中,∠BOC的度數(shù),并說(shuō)明理由或?qū)懗鲎C明過(guò)程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫(xiě)度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,M在DC上,且BM=10,N是AC上一動(dòng)點(diǎn),則DN+MN的最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案