【題目】已知a+b=3,a﹣b=5,則代數(shù)式a2﹣b2的值是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為等邊△ABC與正方形DEFG的重疊情形,其中D、E兩點(diǎn)分別在AB、BC上,且BD=BE,若AB=3,DE=1,則△EFC的面積為( )
A.
B.1
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
操作一:
(1)折疊紙面,使表示的1點(diǎn)與﹣1表示的點(diǎn)重合,則﹣3表示的點(diǎn)與表示的點(diǎn)重合;
操作二:
(2)折疊紙面,使﹣1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問(wèn)題:
①5表示的點(diǎn)與數(shù)表示的點(diǎn)重合;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小松調(diào)查了七年級(jí)(1)班50名同學(xué)最喜歡的籃球明星,結(jié)果如下:
B B C A A B C D C B C A D D B A C C B A
A B D A C C A B A C A B C D A C C A C A
A A A C A D B C C A
其中A代表科比,B代表庫(kù)里,C代表詹姆斯,D代表格里芬,用扇形統(tǒng)計(jì)圖表示該班同學(xué)最喜歡的籃球明星的情況,則表示喜歡科比的扇形的圓心角是(用度分秒表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是半圓O的直徑,點(diǎn)C在半圓O上.
(1)如圖1,若AC=3,∠CAB=30°,求半圓O的半徑;
(2)如圖2,M是的中點(diǎn),E是直徑AB上一點(diǎn),AM分別交CE,BC于點(diǎn)F,D. 過(guò)點(diǎn)F作FG∥AB交邊BC于點(diǎn)G,若△ACE與△CEB相似,請(qǐng)?zhí)骄恳渣c(diǎn)D為圓心,GB長(zhǎng)為半徑的⊙D與直線AC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN繞B點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長(zhǎng)線)于E,F(xiàn). 當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE=CF時(shí)(如圖1),易證AE+CF=EF;
當(dāng)∠MBN繞B點(diǎn)旋轉(zhuǎn)到AE≠CF時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)學(xué)生方隊(duì),B的位置是第8列第7行,記為(8,7),則學(xué)生A在第二列第三行的位置可以表示為( )
A. (2,1) B. (3,3) C. (2,3) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,AD為△ABC角平分線.
(1)用圓規(guī)在AB上作一點(diǎn)P,滿足DP⊥AB;
(2)求:CD的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com