某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃建A、B兩種戶(hù)型的住房共80套,該公司所籌資金不少于2060萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于建房,兩種戶(hù)型的建房成本和售價(jià)如下表:
A B
成本(萬(wàn)元/套) 25 28
售價(jià)(萬(wàn)元/套) 30 34
(1)該公司如何建房獲得利潤(rùn)最大?
(2)根據(jù)市場(chǎng)調(diào)查,每套B型住房的售價(jià)不會(huì)改變,每套A型住房的售價(jià)將會(huì)提高a萬(wàn)元(a>0),且所建的兩種住房可全部售出,該公司又將如何建房獲得利潤(rùn)最大?(注:利潤(rùn)=售價(jià)-成本)
分析:(1)設(shè)建A型的住房x套,B型的住房(80-x)套,根據(jù)該公司所籌資金不少于2060萬(wàn)元,但不超過(guò)2096萬(wàn)元,可列出不等式組求解.然后根據(jù)利潤(rùn)=售價(jià)-成本,列出函數(shù)式,判斷何時(shí)利潤(rùn)最大.
(2)因?yàn)閍是不確定的值了,所以要根據(jù)a的取值判斷該公司又將如何建房獲得利潤(rùn)最大.
解答:解:(1)設(shè)建A型的住房x套,B型的住房(80-x)套,利潤(rùn)為y,
根據(jù)題意得:
25x+28(80-x)≥2060
25x+28(80-x)≤2096
,
解得:48≤x≤60.
利潤(rùn)y=(30-25)x+(34-28)(80-x)=480-x.
∵y隨x的增加而減小,
∴x=48時(shí)利潤(rùn)最大,即建A型住房48套,B型住房32套.

(2)利潤(rùn)y=480+(a-1)x.
當(dāng)a>1時(shí),x=60時(shí)利潤(rùn)y最大,即建A型住房60套,B型住房20套.
當(dāng)a=1時(shí),建A型住房48到60之間即可.
當(dāng)0<a<1時(shí),x=48時(shí)利潤(rùn)最大,即建A型48套,建B型32套.
點(diǎn)評(píng):本題考查一次函數(shù)的應(yīng)用,和一元一次不等式組的應(yīng)用,根據(jù)公司所籌資金情況列出不等式組求出建房情況,然后根據(jù)利潤(rùn)=售價(jià)-進(jìn)價(jià),列出函數(shù)式,根據(jù)取值范圍求出最值,以及最后正確討論a的取值,得到結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃建A、B兩種戶(hù)型的住房共80套,已知該公司所籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于建房?jī)煞N戶(hù)型的建房成本和售價(jià)如下表:
戶(hù)型 A B
成本(萬(wàn)元/套) 25 28
售價(jià)(萬(wàn)元/套) 30 34
(1)該公司對(duì)這兩種戶(hù)型住房有幾種建房方案?請(qǐng)寫(xiě)出所有方案;
(2)該公司如何建房可獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃建A、B兩種戶(hù)型的經(jīng)濟(jì)適用住房共80套,該公司所籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于建房,兩種戶(hù)型的建房成本和售價(jià)如下表:
  A B
成本(萬(wàn)元/套) 25 28
售價(jià)(萬(wàn)元/套) 30 34
(1)該公司對(duì)這兩種戶(hù)型住房有哪幾種建房方案?
(2)若該公司所建的兩種戶(hù)型住房可全部售出,則采取哪一種建房方案獲得利潤(rùn)最大?
(3)根據(jù)市場(chǎng)調(diào)查,每套A型住房的售價(jià)不會(huì)改變,每套B型住房的售價(jià)將會(huì)降低a萬(wàn)元(0<a<6),且所建的兩種戶(hù)型住房可全部售出,該公司又將如何建房獲得利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃興建A,B兩種房型的住房80套,該公司所籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元.且所籌資金全部用于建房,兩種房型的建房成本和售價(jià)如下表:
  A種房型 B種房型
成本(萬(wàn)元/套) 25 28
售價(jià)(萬(wàn)元/套) 30 34
(1)該公司對(duì)這兩種房型住房有哪幾種建房方案?
(2)設(shè)該公司建A型房x套,公司獲得的總利潤(rùn)(總利潤(rùn)=總銷(xiāo)售額-總成本)為W萬(wàn)元,求W與x之間的函數(shù)關(guān)系.
(3)當(dāng)x為何值時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃建A、B兩種戶(hù)型的住房共80套,已知該公司所籌集的資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌集資金全部用于建房,兩種戶(hù)型的建房成本和售價(jià)如下表:
戶(hù)型 A B
成本(萬(wàn)元/套) 25 28
售價(jià)(萬(wàn)元/套) 30 34
(1)試求該公司對(duì)這兩種戶(hù)型住房將有哪幾種建房方案;
(2)試問(wèn)該公司將如何建房,才能使獲得的利潤(rùn)最大;
(3)若根據(jù)市場(chǎng)調(diào)查,每套B型住房的售價(jià)不會(huì)改變,每套A型住房的售價(jià)將會(huì)提高a萬(wàn)元(a>0),且所建的兩種住房可全部售出.試問(wèn)該公司又將如何建房,才能使獲得的利潤(rùn)最大.(注:利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案