【題目】一般地,二元一次方程的解可以轉(zhuǎn)化為點(diǎn)的坐標(biāo),其中x的值對(duì)應(yīng)為點(diǎn)的橫坐標(biāo),y的值對(duì)應(yīng)為點(diǎn)的縱坐標(biāo),如二元一次方程x2y=0的解 和 可以轉(zhuǎn)化為點(diǎn)的坐標(biāo)A(0,0)和B(2,1).以方程x2y=0的解為坐標(biāo)的點(diǎn)的全體叫做方程x2y=0的圖象。
(1)寫出二元一次方程x2y=0的任意一組解___,并把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo)___;
(2)在平面直角坐標(biāo)系中,任何一個(gè)二元一次方程的圖象都是一條直線,如方程x2y=0的圖象是由該方程所有的解轉(zhuǎn)化成的點(diǎn)組成,在圖中描出點(diǎn)A. 點(diǎn)B和點(diǎn)C,觀察它們是否在同一直線上;
(3)取滿足二元一次方程x+y=3的兩個(gè)解,并把它們轉(zhuǎn)化成點(diǎn)的坐標(biāo),畫出二元一次方程x+y=3的圖象;
(4)根據(jù)圖象,寫出二元一次方程x2y=0的圖象和二元一次方程x+y=3的圖象的交點(diǎn)坐標(biāo)___,由此可得二元一次方程組 的解是___.
【答案】(1),(2,1);(2)見解析;(3)見解析;(4) (2,1),
【解析】
(1)計(jì)算出x=-2所對(duì)應(yīng)的y的值即可得到方程的一組解,然后把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo);
(2)利用描點(diǎn)法畫直線AB,然后利用畫的直線可判斷點(diǎn)C在直線AB上;
(3)取兩組對(duì)應(yīng)值,然后利用描點(diǎn)法畫直線x+y=3即可;
(4)利用畫出的圖象寫出交點(diǎn)坐標(biāo),然后利用方程組的解就是兩個(gè)相應(yīng)的函數(shù)圖象的交點(diǎn)坐標(biāo)求解.
(1)二元一次方程x2y=0的解可為 ,把它轉(zhuǎn)化為點(diǎn)C的坐標(biāo)為(2,1);
(2)如圖,點(diǎn)A. 點(diǎn)B和點(diǎn)C同一直線上;
(3)二元一次方程x+y=3的兩個(gè)解為 或 ,把它們轉(zhuǎn)化成點(diǎn)的坐標(biāo)為(3,0),(0,3),如圖;
(4)根據(jù)圖象,二元一次方程x2y=0的圖象和二元一次方程x+y=3的圖象的交點(diǎn)坐標(biāo)為(2,1),由此可得二元一次方程組 的解是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△A′B′C,且點(diǎn)A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為( 。
A. 65°B. 60°C. 50°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一種產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定位3000元,該商場(chǎng)為了促銷,規(guī)定客戶一次購(gòu)買這種新型產(chǎn)品不超過10件時(shí),每件按3000元銷售;若一次購(gòu)買該種產(chǎn)品超過10件時(shí),每多購(gòu)買一件,所購(gòu)買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元;
(1)設(shè)一次購(gòu)買這種產(chǎn)品x(x≥10)件,商場(chǎng)所獲的利潤(rùn)為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)在客戶購(gòu)買產(chǎn)品的件數(shù)盡可能少的前提下,商場(chǎng)所獲的利潤(rùn)為12000元,此時(shí)該商場(chǎng)銷售了多少件產(chǎn)品?
(3)填空:該商場(chǎng)的銷售人員發(fā)現(xiàn),當(dāng)客戶一次購(gòu)買產(chǎn)品的件數(shù)在某一個(gè)區(qū)間時(shí),會(huì)出現(xiàn)隨著一次購(gòu)買的數(shù)量的增多,商場(chǎng)所獲的利潤(rùn)反而減少這一情況,客戶一次購(gòu)買產(chǎn)品的數(shù)量x滿足的條件是 (其它銷售條件不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:①;②;③.
(1)根據(jù)你觀察、歸納、發(fā)現(xiàn)的規(guī)律,寫出可以是______的平方.
(2)試猜想寫出第個(gè)等式,并說明成立的理由.
(3)利用前面的規(guī)律,將改成完全平方的形式為:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD、AB的中點(diǎn),下列結(jié)論:①∠OBE=∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,1),B(3,2),將點(diǎn)A向左平移兩個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)C.
(1)寫出點(diǎn)C坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AB上(不與A,B重合),DE∥BC交AC于點(diǎn)E,將△ADE沿直線DE翻折,得到△A′DE,直線DA′,EA′分別交直線BC于點(diǎn)M,N.
(1)求證:DB=DM.
(2)若=2,DE=6,求線段MN的長(zhǎng).
(3)若=n(n≠1),DE=a,則線段MN的長(zhǎng)為 (用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1與∠2互補(bǔ),.
那么.
證明如下:
(已知)
_________(_____________________________________________)
∴(__________________________________)
∵(已知)
∴(等量代換)
∴____________∥___________(__________________________________)
∴(__________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,AD∥BC,要判別四邊形ABCD是平行四邊形,還需滿足條件( )
A. ∠A+∠C=180°B. ∠B+∠D=180°
C. ∠A+∠B=180°D. ∠A+∠D=180°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com