16.已知x=$\frac{a}{b+c}$,y=$\frac{c+a}$,z=$\frac{c}{a+b}$,求$\frac{x}{1+x}$+$\frac{y}{1+y}+\frac{z}{1+z}$的值.

分析 $\frac{x}{1+x}$變形成$\frac{1}{\frac{1}{x}+1}$的形式,然后把x的值代入即可化簡,同理化簡后邊的兩個(gè)式子,然后進(jìn)行加法運(yùn)算即可.

解答 解:$\frac{x}{1+x}$=$\frac{1}{\frac{1}{x}+1}$=$\frac{1}{\frac{b+c}{a}+1}$=$\frac{1}{\frac{a+b+c}{a}}$=$\frac{a}{a+b+c}$,
同理,$\frac{y}{1+y}$=$\frac{a+b+c}$,$\frac{z}{1+z}$=$\frac{c}{a+b+c}$,
則原式=$\frac{a+b+c}{a+b+c}$=1.

點(diǎn)評(píng) 本題考查了分式的化簡求值,正確對(duì)每個(gè)分式進(jìn)行化簡是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.若a=b,則下列式子錯(cuò)誤的是( 。
A.$\frac{1}{3}$a=$\frac{1}{2}$bB.a-2=b-2C.-$\frac{3}{4}a=-\frac{3}{4}b$D.5a-1=5b-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.12x5y6-6x4y3+3x2y3÷(-3x2y3)=-4x3y3+2x2-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知?ABCD中,∠ABC的平分線交AD于E,cos∠AEB=$\frac{2}{3}$,求∠C的度數(shù)(精確到1′).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知由x軸、一次函數(shù)y=kx+4(k<0)的圖象及分別過點(diǎn)C(1,0)、D(4,0)兩點(diǎn)作平行于y軸的兩條直線所圍成的圖形ABDC的面積為7,試求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.小明在研究由矩形紙片折疊等邊三角形之后,經(jīng)過探究,他用圓形紙片也折疊出了等邊三角形,以下是他的折疊過程:第一步:將圓形紙片沿直徑AM對(duì)折,然后打開;第二步:將紙片沿折痕BC翻折使點(diǎn)M落在圓心I處,然后打開,連接AB、AC.

(1)在圖③中BC與IM的位置關(guān)系是互相垂直平分;
(2)小明折疊出的△ABC是等邊三角形嗎?請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,點(diǎn)C是線段AB上一點(diǎn),AC<AB,M,N分別是AB和CB的中點(diǎn),AC=8,NB=5,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖①,已知直線y=-$\frac{1}{2}$x+3分別交x軸,y軸于點(diǎn)A,點(diǎn)B.點(diǎn)P是射線AO上的一個(gè)動(dòng)點(diǎn).把線段PO繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到的對(duì)應(yīng)線段為PO′,再延長PO′到C使CO′=PO′,連結(jié)AC,設(shè)點(diǎn)P坐標(biāo)為(m,0),△APC的面積為S.
(1)直接寫出OA和OB的長,OA的長是6,OB的長是3;
(2)當(dāng)點(diǎn)P在線段OA上(不含端點(diǎn))時(shí),求S關(guān)于m的函數(shù)表達(dá)式;
(3)當(dāng)以A,P,C為頂點(diǎn)的三角形和△AOB相似時(shí),求出所有滿足條件的m的值;
(4)如圖②,當(dāng)點(diǎn)P關(guān)于OC的對(duì)稱點(diǎn)P′落在直線AB上時(shí),m的值是-$\frac{30}{11}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.某商場經(jīng)銷一種商品,由于進(jìn)貨時(shí)的價(jià)格比原來的進(jìn)價(jià)低了8%,但售價(jià)不變,這樣使得利潤率由原利潤率a%增長為(a+10)%,則原利潤率為15%.

查看答案和解析>>

同步練習(xí)冊(cè)答案