下列陰影三角形分別在小正方形組成的網(wǎng)格中,則與左圖中的三角形相似的是(    )
D

試題分析:根據(jù)相似三角形判斷條件,兩條對應(yīng)邊成比例,且其夾角相等,那么兩三角形相似,不妨設(shè)小正方形的邊長為1,原圖有一直角切其兩邊長分別為,2其比值為1:2,而A,B,C均不滿足,只有D滿足,所以D為正選。
點評:熟知相似三角形的判定,一般有三種;一兩個對應(yīng)角相等,二兩對應(yīng)邊城比例且其夾角相等,三,三邊成比列。本題屬于第一種,結(jié)合圖形易求之,屬于基礎(chǔ)題,難度不大。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點P,Q分別在直線BC上運動,且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:點P為正方形ABCD內(nèi)部一點,且∠BPC=90°,過點P的直線分別交邊AB、邊CD于點E、點F.
(1)如圖1,當PC=PB時,則SPBE、SPCF SBPC之間的數(shù)量關(guān)系為 _________ 
(2)如圖2,當PC=2PB時,求證:16SPBE+SPCF=4SBPG;
(3)在(2)的條件下,Q為AD邊上一點,且∠PQF=90°,連接BD,BD交QF于點N,若Sbpc=80,BE=6.求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣4,0),點B的坐標是(0,b)(b>0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關(guān)于y軸的對稱點為P´(點P´不在y軸上),連接PP´,P´A,P´C.設(shè)點P的橫坐標為a.
(1)當b=3時,
①求直線AB的解析式;
②若點P′的坐標是(﹣1,m),求m的值;
(2)若點P在第一象限,記直線AB與P´C的交點為D.當P´D:DC=1:3時,求a的值;
(3)是否同時存在a,b,使△P´CA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對折,使A、C重合,直線MN交AC于O.
(1)求證:△COM∽△CBA;    
(2)求線段OM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。

(1)在△ABC中,AB=               ;
(2)當x=      時,矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時相等?請說出你的判斷,并加以說明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,DE∥BC,AD=5,BD=10,AE=3,則CE的值為(  )
A.9B.6C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在.點是線段邊上的一動點(不含、兩端點),連結(jié),作,交線段于點
  
(1)求證:;
(2)設(shè),,請寫之間的函數(shù)關(guān)系式,并求的最小值。
(3)點在運動的過程中,能否構(gòu)成等腰三角形?若能,求出的長;若不能,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD四邊的中點分別為E,F(xiàn),G,H,對角線AC與BD相交于點O,若四邊形EFGH的面積是3,則四邊形ABCD的面積是( 。
A.3B.6C.9D.12

查看答案和解析>>

同步練習(xí)冊答案