如圖,過點(diǎn)O的直線與雙曲線y=
k
x
(k≠0)
交于A、B兩點(diǎn),過B作BC⊥x軸于C點(diǎn),作BD⊥y軸于D點(diǎn),在x軸、y軸上分別取點(diǎn)F、E,使AE=AF=OA,設(shè)圖中兩塊陰影部分圖形的面積分別是S1,S2,則S1,S2的數(shù)量關(guān)系是(  )
A.S1=S2B.2S1=S2C.3S1=S2D.無法確定

設(shè)A點(diǎn)坐標(biāo)為(m,n),
過點(diǎn)O的直線與雙曲線y=
k
x
(k≠0)
交于A、B兩點(diǎn),則AB兩點(diǎn)關(guān)與原點(diǎn)對(duì)稱,則B的坐標(biāo)為(-m,-n);
矩形OCBD中,易得OD=-n,OC=m;則S1=-mn;
在Rt△EOF中,AE=AF=OA,故A為EF中點(diǎn),
由中位線的性質(zhì)可得OF=-2n,OE=2m;
則S2=OF×OE=-4mn;
故2S1=S2
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=k1x+b(k1≠0)與雙曲線y=
k2
x
(k2≠0)相交于A(1,m)、B(-2,-1)兩點(diǎn).求直線和雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=-
8
x
的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2,求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知,△OAB中,AB=AO=5,OB=6,雙曲線y=
m
x
過點(diǎn)A,直線y=kx+b與雙曲線y=
m
x
,相交于A、C兩點(diǎn),且C點(diǎn)的橫坐標(biāo)為6.
①求點(diǎn)A的坐標(biāo);②求雙曲線y=
m
x
與直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知反比例函數(shù)的解析式為y=
1-k
x
(k≠1).
(1)在反比例函數(shù)圖象的每一條曲線上,y隨著x的增大而增大,求k的取值范圍;
(2)在(1)的條件下點(diǎn)A為雙曲線y=
1-k
x
(x<0)上一點(diǎn),ABx軸交直線y=x于點(diǎn)B,若AB2-OA2=4,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)y=-
6
x
的和函數(shù)y=-x+1,利用圖象求方程-
6
x
=-x+1
的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A、C是函數(shù)y=
1
x
的圖象上的任意兩點(diǎn),過A作x軸的垂線,垂足為B,過C作y軸的垂線,垂足為D,記Rt△AOB的面積為S1,Rt△COD的面積為S2,則( 。
A.S1>S2
B.S1<S2
C.S1=S2
D.S1和S2的大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)A在反比例函數(shù)y=
3
x
(x>0)
的圖象上,過A作AB⊥x軸與反比例函數(shù)y=-
6
x
(x>0)
的圖象交于點(diǎn)B,點(diǎn)C為y軸上任意一點(diǎn),則△ABC的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在反比例函數(shù)①y=
3
x
,②y=
-1
2x
,③y=
-3
100x
,④y=
0.2
x
中,在每一象限內(nèi),y的值隨x的增大而增大的有
( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案