水庫(kù)的庫(kù)容通常是用水位的高低來(lái)預(yù)測(cè)的.下表是某市一水庫(kù)在某段水位范圍內(nèi)的庫(kù)容與水位高低的相關(guān)水文資料,請(qǐng)根據(jù)表格提供的信息回答問(wèn)題.
水位高低x(單位:米) 10   20  30  40
 庫(kù)容y(單位:萬(wàn)立方米) 3000  3600   4200  4800
(1)將上表中的各對(duì)數(shù)據(jù)作為坐標(biāo)(x,y),在給出的坐標(biāo)系中用點(diǎn)表示出來(lái):
(2)用線段將(1)中所畫的點(diǎn)從左到右順次連接.若用此圖象來(lái)模擬庫(kù)容y與水位高低x的函數(shù)關(guān)系.根據(jù)圖象的變化趨勢(shì),猜想y與x間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢(shì)十分嚴(yán)峻,上級(jí)要求該水庫(kù)為其承擔(dān)部分分洪任務(wù)約800萬(wàn)立方米.若該水庫(kù)當(dāng)前水位為65米,且最高水位不能超過(guò)79米.請(qǐng)根據(jù)上述信息預(yù)測(cè):該水庫(kù)能否承擔(dān)這項(xiàng)任務(wù)并說(shuō)明理由.精英家教網(wǎng)
分析:本題的關(guān)鍵是要確定模擬庫(kù)容和水位高低的函數(shù)關(guān)系式,可以先假設(shè)存在這樣的關(guān)系式,然后根據(jù)題目給出的條件運(yùn)用待定系數(shù)法來(lái)判斷是否存在這樣的函數(shù)關(guān)系式.
解答:精英家教網(wǎng)解:(1)描點(diǎn)如圖所示.

(2)連線如圖所示.
猜想:y與x具有一次函數(shù)關(guān)系.
設(shè)其函數(shù)解析式為y=kx+b(k≠0).
把(10,3000)、(20,3600)代入得:
3000=10k+b
3600=20k+b

解得:
k=60
b=2400
∴y=60x+2400
將(30,4200)、(40,4800)分別代入上式,
得:4200=60×30+2400,4800=60×40+2400.
所以(30,4200)、(40,4800)均在y=60x+2400的圖象上.

(3)能承擔(dān).∵當(dāng)x=79時(shí),
y1=79×60+2400.
當(dāng)x=65時(shí),
y2=65×60+2400.y1-y2=60(79-65)=60×14=840.∵840>800.
∴該水庫(kù)能接受這項(xiàng)任務(wù).
點(diǎn)評(píng):解答一次函數(shù)的應(yīng)用問(wèn)題中,要注意自變量的取值范圍還必須使實(shí)際問(wèn)題有意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué)八年級(jí)下冊(cè) 北師大新課標(biāo) 題型:013

下面有四種說(shuō)法:

①一組數(shù)據(jù)的平均數(shù)可以大于其中的每個(gè)數(shù)據(jù);

②一組數(shù)據(jù)的平均數(shù)可以大于除1個(gè)數(shù)據(jù)外的所有數(shù)據(jù);

③一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方;

④通常是用樣本的頻數(shù)分布去估計(jì)總體的頻數(shù)分布.

其中正確的是

[  ]

A.1種

B.2種

C.3種

D.4種

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

水庫(kù)的庫(kù)容通常是用水位的高低來(lái)預(yù)測(cè)的.下表是某市一水庫(kù)在某段水位范圍內(nèi)的庫(kù)容與水位高低的相關(guān)水文資料,請(qǐng)根據(jù)表格提供的信息回答問(wèn)題.
水位高低x(單位:米)10 20 30 40
庫(kù)容y(單位:萬(wàn)立方米)3000 3600 4200 4800
(1)將上表中的各對(duì)數(shù)據(jù)作為坐標(biāo)(x,y),在給出的坐標(biāo)系中用點(diǎn)表示出來(lái):
(2)用線段將(1)中所畫的點(diǎn)從左到右順次連接.若用此圖象來(lái)模擬庫(kù)容y與水位高低x的函數(shù)關(guān)系.根據(jù)圖象的變化趨勢(shì),猜想y與x間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢(shì)十分嚴(yán)峻,上級(jí)要求該水庫(kù)為其承擔(dān)部分分洪任務(wù)約800萬(wàn)立方米.若該水庫(kù)當(dāng)前水位為65米,且最高水位不能超過(guò)79米.請(qǐng)根據(jù)上述信息預(yù)測(cè):該水庫(kù)能否承擔(dān)這項(xiàng)任務(wù)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2005•泰安)水庫(kù)的庫(kù)容通常是用水位的高低來(lái)預(yù)測(cè)的.下表是某市一水庫(kù)在某段水位范圍內(nèi)的庫(kù)容與水位高低的相關(guān)水文資料,請(qǐng)根據(jù)表格提供的信息回答問(wèn)題.
水位高低x(單位:米)10  20 30 40
 庫(kù)容y(單位:萬(wàn)立方米)3000 3600  4200 4800
(1)將上表中的各對(duì)數(shù)據(jù)作為坐標(biāo)(x,y),在給出的坐標(biāo)系中用點(diǎn)表示出來(lái):
(2)用線段將(1)中所畫的點(diǎn)從左到右順次連接.若用此圖象來(lái)模擬庫(kù)容y與水位高低x的函數(shù)關(guān)系.根據(jù)圖象的變化趨勢(shì),猜想y與x間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢(shì)十分嚴(yán)峻,上級(jí)要求該水庫(kù)為其承擔(dān)部分分洪任務(wù)約800萬(wàn)立方米.若該水庫(kù)當(dāng)前水位為65米,且最高水位不能超過(guò)79米.請(qǐng)根據(jù)上述信息預(yù)測(cè):該水庫(kù)能否承擔(dān)這項(xiàng)任務(wù)并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省泰安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•泰安)水庫(kù)的庫(kù)容通常是用水位的高低來(lái)預(yù)測(cè)的.下表是某市一水庫(kù)在某段水位范圍內(nèi)的庫(kù)容與水位高低的相關(guān)水文資料,請(qǐng)根據(jù)表格提供的信息回答問(wèn)題.
水位高低x(單位:米)10  20 30 40
 庫(kù)容y(單位:萬(wàn)立方米)3000 3600  4200 4800
(1)將上表中的各對(duì)數(shù)據(jù)作為坐標(biāo)(x,y),在給出的坐標(biāo)系中用點(diǎn)表示出來(lái):
(2)用線段將(1)中所畫的點(diǎn)從左到右順次連接.若用此圖象來(lái)模擬庫(kù)容y與水位高低x的函數(shù)關(guān)系.根據(jù)圖象的變化趨勢(shì),猜想y與x間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)由于鄰近市區(qū)連降暴雨,河水暴漲,抗洪形勢(shì)十分嚴(yán)峻,上級(jí)要求該水庫(kù)為其承擔(dān)部分分洪任務(wù)約800萬(wàn)立方米.若該水庫(kù)當(dāng)前水位為65米,且最高水位不能超過(guò)79米.請(qǐng)根據(jù)上述信息預(yù)測(cè):該水庫(kù)能否承擔(dān)這項(xiàng)任務(wù)并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案