【題目】如圖,直線MN經(jīng)過(guò)正方形ABCD的頂點(diǎn)D且不與正方形的任何一邊相交,AM⊥MN于M,CN⊥MN于N,BR⊥MN于R。
(1)求證:△ADM≌△DCN
(2)求證:MN=AM+CN
(3)試猜想BR與MN的數(shù)量關(guān)系,并證明你的猜想
【答案】(1)證明見解析;(2)證明見解析;(3)BR=MN;證明見解析.
【解析】
(1)要證△ADM≌△DCN,由于它們都是直角三角形,所以首先有直角相等,又由ABCD是正方形有AD=DC,再找一個(gè)條件即可,而由圖形很容易分析得出∠ADM=∠DCN;
(2)由△AMD≌△DNC得到AM=DN,MD=NC,通過(guò)等量代換等到結(jié)論;
(3)作AE⊥BR于E,根據(jù)題意證明△ABE≌△DCN,然后再結(jié)合△ADM≌△DCN得到△ABE≌△ADM,細(xì)致證明通過(guò)等量代換等到結(jié)論即可.
證明:(1)∵AM⊥MN于點(diǎn)M,CN⊥MN于點(diǎn)N(已知),
∴∠AMD=∠DNC=90°(垂直的定義).
∴∠MAD+∠MDA=180°-90°=90°(三角形內(nèi)角和定理).
∵四邊形ABCD是正方形(已知),
∴∠ADC=90°,AD=DC.
∴∠MDA+∠NDC=180°-90°=90°(平角的定義).
∴∠MAD+∠MDA=∠NDC+∠NCD.
∴∠MAD=∠NDC.
在△AMB和△DNC中,
∵∠AMD=∠DNC,∠MAD=∠NDC,AD=DC,
∴△AMD≌△DNC(AAS).
(2)由(1)△AMD≌△DNC,
∴AM=DN,MD=NC.(全等三角形對(duì)應(yīng)邊相等)
∴MD+DN=AM+CN.
即MN=AM+CN.
(3)猜想BR=MN.
證明如下:
作AE⊥BR于E.
∵BR⊥MN,CN⊥MN(已知)
∴BR∥CN(垂直于同一直線的兩條直線平行)
∴∠1=∠2(兩直線平行同位角相等)
又四邊形ABCD是正方形
∴AB⊥BC,DC⊥BC,
∴∠ABE=∠DCN=90°-∠1,
在△ABE和△DCN中,AB=DC,∠ABE=∠DCN,∠AEB=∠DNC=90°
∴△ABE≌△DCN(AAS)
由(1)△ADM≌△DCN
∴△ABE≌△ADM
∴AM=AE(全等三角形對(duì)應(yīng)邊相等).
又AE∥MR,AM∥ER,
∴四邊形AERM是平行四邊形
∴BR=BE+ER=CN+AM=DM+DN=MN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P到BE,BD,AC的距離恰好相等,則點(diǎn)P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點(diǎn),上述結(jié)論中,正確結(jié)論的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)根據(jù)已知條件,用尺規(guī)作圖將圖形補(bǔ)充完整,并保留作圖痕跡。
(2)求證:△ACD≌△AED;
(3)若∠B=30°,CD=1,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】打折前,買20件A商品和30件B商品要用2200元,買50件A商品和10件B商品要用2900元.若打折后,買40件A商品和40件B商品用了3240元,比不打折少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,A、C、D三點(diǎn)在同一直線上,連接BD、AE,并延長(zhǎng)AE交BD于F.
(1)求證:AE=BD;
(2)試判斷直線AE與BD的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從邊長(zhǎng)為a的大正方形紙板中挖去一個(gè)邊長(zhǎng)為b的小正方形后,將其裁成四個(gè)相同的等腰梯形(如圖1),然后拼成一個(gè)平行四邊形(如圖2)。那么通過(guò)計(jì)算兩個(gè)圖形的陰影部分的面積,可以驗(yàn)證成立的公式是( )
A.a2-b2=(a-b)2 | B.(a+b)2="a+2ab+b" |
C.(a-b)2=a2-2ab+b2 | D.a2-b2=(a-b)(a+b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:y=2x+3與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn),將直線l1向下平移1個(gè)長(zhǎng)度單位后得到直線l2,直線l2與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,
(1)求△AOB 的面積;
(2)直線l2的表達(dá)式;
(3)求△CBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知經(jīng)過(guò)原點(diǎn)的直線與反比例函數(shù)圖象分別相交于點(diǎn)和點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),若的面積為,則的值為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com