【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是下滑數(shù)的概率為( 。

A. B. C. D.

【答案】A

【解析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.

詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為
故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰ABC的底邊BC長為6,面積是36,腰AC的垂直平分線EF分別交AC,AB邊于EF點.若點DBC邊的中點,點M為線段EF上一動點,則CDM周長的最小值為( 。

A.6B.10C.15D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;

(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標系ABC是格點三角形(頂點在網(wǎng)格線的交點上)

(1)先作ABC關于原點O成中心對稱的A1B1C1,再把A1B1C1向上平移4個單位長度得到A2B2C2

(2)A2B2C2ABC是否關于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是某公園為迎接“中國–南亞博覽會”設置的一休閑區(qū).,弧的半徑長是米,的中點,點在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學們的一番熱議,達成以下四個觀點:

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競爭,合作雙贏.

要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:

 觀點

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學生共有   人;表中a   b   ;

(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準備從AB,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,都是等邊三角形,點的延長線上.

1)找出圖中一對全等三角形,并證明其全等;

2)求的度數(shù)?若,求的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(知識背景)

我們在第十一章《三角形》中學習了三角形的邊與角的性質,在第十二章《全等三角形》中學習了全等三角形的性質和判定,在十三章《軸對稱》中學習了等腰三角形的性質和判定.在一些探究題中經(jīng)常用以上知識轉化角和邊,進而解決問題.

1.(問題初探)

如圖(1),ABC中,∠BAC90°ABAC,點DBC上一點,連接AD,以AD為一邊作ADE,使∠DAE90°,ADAE,連接BE,猜想BECD有怎樣的數(shù)量關系,并說明理由.

2.(類比再探)

如圖(2),ABC中,∠BAC90°,ABAC,點MAB上一點,點DBC上一點,連接MD,以MD為一邊作MDE,使∠DME90°,MDME,連接BE,則∠EBD________.(直接寫出答案,不寫過程,但要求作出輔助線)

3.(方法遷移)

如圖(3),ABC是等邊三角形,點DBC上一點,連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BEBC之間有怎樣的數(shù)量關系?________(直接寫出答案,不寫過程).

4.(拓展創(chuàng)新)

如圖(4),ABC是等邊三角形,點MAB上一點,點DBC上一點,連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數(shù),并說明理由.

查看答案和解析>>

同步練習冊答案