【題目】已知直線y=x+4分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+mx﹣4經(jīng)過點(diǎn)A,和x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)D是拋物線上的動(dòng)點(diǎn),且在第三象限,求△ABD面積的最大值;
(3)如圖2,經(jīng)過點(diǎn)M(﹣4,1)的直線交拋物線于點(diǎn)P、Q,連接CP、CQ分別交y軸于點(diǎn)E、F,求OEOF的值.
【答案】(1)y=x2+3x﹣4;(2)當(dāng)n=﹣2時(shí),△ABD面積的最大,最大值為24;(3)1.
【解析】
(1)先求得點(diǎn)A的坐標(biāo),然后將點(diǎn)A的坐標(biāo)代入拋物線的解析式求得m的值即可;
(2)設(shè)D(n,n2+3n-4),根據(jù)圖形的面積公式得到S△ABD=-2(n+2)2+24,當(dāng)n=-2時(shí),求得△ABD最大值為24;
(3)先求得點(diǎn)C的坐標(biāo),然后設(shè)直線CQ的解析式為y=ax-a,CP的解析式為y=bx-b,接下來求得點(diǎn)Q和點(diǎn)P的橫坐標(biāo),然后設(shè)直線PQ的解析式為y=x+d,把M(-4,1)代入得:y=kx+4k+1,將PQ的解析式為與拋物線解析式聯(lián)立得到關(guān)于x的一元二次方程,然后依據(jù)一元二次方程根與系數(shù)的關(guān)系可求得ab=1,最后,由ab的值可得到OEOF的值.
(1)把y=0代入y=x+4得:0=x+4,解得:x=﹣4,
∴A(﹣4,0).
把點(diǎn)A的坐標(biāo)代入y=x2+mx﹣4得:m=3,
∴拋物線的解析式為y=x2+3x﹣4;
(2)如圖1,
設(shè)D(n,n2+3n﹣4),
∴S△ABD=S四邊形ADOB﹣S△BDO=×4×4+×4[﹣(n2+3n﹣4)]﹣×4n=﹣2n2﹣8n+16=﹣2(n+2)2+24,
∴當(dāng)n=﹣2時(shí),△ABD面積的最大,最大值為24;
(3)把y=0代入 y=x2+3x﹣4,得:x2+3x﹣4=0,解得:x=1或x=﹣4,
∴C(1,0),
設(shè)直線CQ的解析式為y=ax﹣a,CP的解析式為y=bx﹣b.
∴,解得:x=﹣1或x=4﹣a,
∴xQ=4﹣a
同理:xP=4﹣b,
設(shè)直線PQ的解析式為y=kx+b,把M(﹣4,1)代入得:y=kx+4k+1.
∴,
∴x2+(3﹣k)x﹣4k﹣5=0,
∴xQ+xP=4﹣a+4﹣b=3﹣k,xQxP=(4﹣a)(4﹣b)=﹣4k﹣5,
解得:ab=﹣1.
又∵OE=﹣b,OF=a,
∴OEOF=﹣ab=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D是邊BC的中點(diǎn).
(1)①如圖1,求證:△ABD和△ACD的面積相等;
②如圖2,延長(zhǎng)AD至E,使DE=AD,連結(jié)CE,求證:AB=EC.
(2)當(dāng)∠BAC=90°時(shí),可以結(jié)合利用以上各題的結(jié)論,解決下列問題:
①求證:ADBC(即:直角三角形斜邊上的中線等于斜邊的一半);
②已知BC=4,將△ABD沿AD所在直線翻折,得到△ADB',若△ADB'與△ABC重合部分的面積等于△ABC面積的,請(qǐng)畫出圖形(草圖)并求出AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 是矩形,點(diǎn) B 的坐標(biāo)為(4,3).
(1)直接寫出A、C兩點(diǎn)的坐標(biāo);
(2)平行于對(duì)角線AC的直線 m 從原點(diǎn)O出發(fā),沿 x 軸正方向以每秒 1 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線 m 與矩形 OABC 的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動(dòng)的時(shí)間為t(秒).
①若 MN=AC,求 t 的值;
②設(shè)△OMN 的面積為S,當(dāng) t 為何值時(shí),S=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
當(dāng)m取何值時(shí),這個(gè)方程有兩個(gè)不相等的實(shí)根?
若方程的兩根都是正數(shù),求m的取值范圍;
設(shè),是這個(gè)方程的兩個(gè)實(shí)數(shù)根,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,n)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)求一次函數(shù)解析式及m的值;
(2)根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)小于于反比例函數(shù)的值?
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F;當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形APFD是平行四邊形?
(2)設(shè)四邊形APFE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此時(shí)P,E兩點(diǎn)間的距離;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球;乙盒中裝有三個(gè)球,分別為兩個(gè)綠球和一個(gè)紅球;丙盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球,從三個(gè)盒子中各隨機(jī)取出一個(gè)小球
(1)請(qǐng)畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果
(2)請(qǐng)直接寫出事件“取出至少一個(gè)紅球”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),某校準(zhǔn)備成立“經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂”和“地方戲曲”等四個(gè)課外活動(dòng)小組.學(xué)生報(bào)名情況如圖(每人只能選擇一個(gè)小組):
(1)報(bào)名參加“民族器樂”課外活動(dòng)小組的學(xué)生數(shù)占所有報(bào)名人數(shù)的30%,報(bào)名參加課外活動(dòng)小組的學(xué)生共有______人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)報(bào)名情況,學(xué)校決定從報(bào)名“地方戲曲”小組的甲、乙、丙三人中隨機(jī)調(diào)整兩人到“經(jīng)典誦讀”小組,甲、乙恰好都被調(diào)整到“經(jīng)典誦讀”小組的概率是多少?請(qǐng)用列表或畫樹狀圖的方法說明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com