【題目】關(guān)于x的一元二次方程(p1x2x+p210一個(gè)根為0,則實(shí)數(shù)p的值是_____

【答案】1

【解析】

根據(jù)一元二次方程的解的定義,將x=0代入原方程,然后解關(guān)于p的一元二次方程.另外注意關(guān)于x的一元二次方程(p-1x2-x+p2-1=0的二次項(xiàng)系數(shù)不為零.

∵關(guān)于x的一元二次方程(p1x2x+p210一個(gè)根為0

x0滿(mǎn)足方程(p1x2x+p210,

p210,

解得,p1p=﹣1;

又∵p1≠0,即p≠1;

∴實(shí)數(shù)p的值是﹣1

故答案是:﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明做了以下5道題:①(x﹣1)(x+4)=x2﹣4;②(﹣3+x)(3+x)=x2﹣9;③(﹣5x+7y)(﹣5x﹣7y)=25x2﹣49y2;④(xy﹣6)2=x2y2﹣12xy+36;⑤(﹣x﹣y)2=x2+2xy+y2 , 你認(rèn)為小明一共做對(duì)了(
A.5道
B.4道
C.3道
D.2道

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)都為整數(shù)的△ABC≌△DEF ,AB與DE是對(duì)應(yīng)邊,AB=2,BC=4,若△DEF的周長(zhǎng)為偶數(shù),則 DF的取值為( )
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:運(yùn)用“同一圖形的面積相等”可以證明一些含有線(xiàn)段的等式成立,這種解決問(wèn)題的方法我們稱(chēng)之為面積法. 如圖1,在等腰△ABC中,AB=AC AC邊上的高為h,點(diǎn)M為底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1、h2,連接AM,利用SABC=SABMSACM,可以得出結(jié)論:h= h1h2.

類(lèi)比探究:在圖1中,當(dāng)點(diǎn)MBC的延長(zhǎng)線(xiàn)上時(shí),猜想h、h1h2之間的數(shù)量關(guān)系并證明你的結(jié)論.

拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線(xiàn)l1y =x+3,l2y =-3x+3,若l2上一點(diǎn)Ml1的距離是1,試運(yùn)用 “閱讀理解”和“類(lèi)比探究”中獲得的結(jié)論,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點(diǎn),若直線(xiàn)y=﹣x+b與反比例函數(shù)y=的圖象有2個(gè)公共點(diǎn),則b的取值范圍是(  )

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x,y表示兩個(gè)數(shù),規(guī)定新運(yùn)算“※”“〇”如下:x※y=5x+4y,x〇y=6xy,求(3※4)〇5的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線(xiàn)和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線(xiàn)可以用y=x2+bx+c表示,且拋物線(xiàn)的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為m

1)求該拋物線(xiàn)的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?

3)在拋物線(xiàn)型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線(xiàn)上,小李在P處測(cè)得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí),PC=30 m,點(diǎn)C與點(diǎn)A恰好在同一水平線(xiàn)上,點(diǎn)A、B、P、C在同一平面內(nèi).

(1)求居民樓AB的高度;

(2)求C、A之間的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若點(diǎn)P從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)P、Q分別從點(diǎn)B、A同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為ts.
(1)用含t的式子表示線(xiàn)段AP、AQ的長(zhǎng);
(2)當(dāng)t為何值時(shí),△APQ是以PQ為底邊的等腰三角形?
(3)當(dāng)t為何值時(shí),PQ∥BC?

查看答案和解析>>

同步練習(xí)冊(cè)答案