(2013•豐臺區(qū)二模)操作探究:
一動點沿著數(shù)軸向右平移5個單位,再向左平移2個單位,相當于向右平移3個單位.用實數(shù)加法表示為 5+(-2)=3.
若平面直角坐標系xOy中的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
(1)計算:{3,1}+{1,2};
(2)若一動點從點A(1,1)出發(fā),先按照“平移量”{2,1}平移到點B,再按照“平移量”
{-1,2}平移到點C;最后按照“平移量”{-2,-1}平移到點D,在圖中畫出四邊形ABCD,并直接寫出點D的坐標;
(3)將(2)中的四邊形ABCD以點A為中心,順時針旋轉90°,點B旋轉到點E,連結AE、BE若動點P從點A出發(fā),沿△AEB的三邊AE、EB、BA平移一周. 請用“平移量”加法算式表示動點P的平移過程.