在平面直角坐標系中,矩形OACB的頂點O在坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.
(1)求線段CD的長;
(2)若E為邊OA上的一個動點,求△CDE周長的最小值;
(3)若E、F為線段邊OA上的兩個動點(點E在點F左邊),且EF=2,當四邊形CDEF的周長最小時,求點E、F的坐標.

【答案】分析:(1)結(jié)合已知條件,根據(jù)勾股定理求出即可求出CD的長度;
(2)根據(jù)兩點之間線段最短的性質(zhì),CD的長度一定,求的D點關于x軸的對稱點D′,CD′即為C點到D點的最小值,求△CDE周長的最小值為CD′+CD;
(3)作點D關于x軸的對稱點D′,連接D′G與x軸交于點E,在EA上截EF=2,在CB邊上截取CG=2,根據(jù)軸對稱-最短線路的有關知識,結(jié)合圖形和已知條件推出Rt△D′OE∽Rt△D′BG,根據(jù)相似三角形邊得比例關系,很容易結(jié)合求的OE的長度,繼而求的OF的長度,很容易得出E點,F(xiàn)點的坐標
解答:解:(1)∵矩形OACB,OA=3,OB=4,D為邊OB的中點,
∴BC=OA=3,BD=OB=2,
∴CD=;(3分)

(2)如圖,作點D關于x軸的對稱點D′(0,-2),(4分)
連接CD′與x軸交于點E,連接DE,
∴DE+CE=CD′(最小值),
∵在矩形OACB中,OA=3,OB=4,D為OB的中點,
∴BC=3,D′O=DO=2,D′B=6,
∴D′C=,(6分)
∴△CDE周長的最小值為:CD+DE+CE=CD+D′C=;(7分)

(3)如圖,作點D關于x軸的對稱點D′,在CB邊上截取CG=2,
連接D′G與x軸交于點E,在EA上截EF=2,(8分)
∵GC∥EF,GC=EF,
∴四邊形GEFC為平行四邊形,有GE=CF,
又DC、EF的長為定值,
∴此時得到的點E、F使四邊形CDEF的周長最小,(9分)
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BG,有
,(10分)
,(11分)
∴點E的坐標為(,0),點F的坐標為(,0).(12分)
點評:本題主要考查相似三角形的判定和性質(zhì)、勾股定理、軸對稱-最短線路的有關知識.本題關鍵是通過勾股定理求出各邊的長度,根據(jù)軸對稱-最短線路的有關知識找到E點、D′點的位置.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案