如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果P、Q同時出發(fā),當Q到達終點時,精英家教網P也隨之停止運動.用t表示移動時間,設四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長;
(2)試求出S與t的函數(shù)關系式;
(3)當t為何值時,△QAP為等腰直角三角形?并求出此時S的值.
分析:t表示移動時間,又有其移動的速度,則可求其移動的路程,總長度減去移動的路程,即為第一問所求,第二問中,總面積已知,只需求出移動中兩個三角形的面積,即△QDC與△PBC的面積即可,總面積減去兩個三角形的面積即為所求,在第三問中要使△AQP為等腰直角三角形,只需AQ=AP即可.
解答:解:由題意可知,(1)AQ=5-t;BP=12-2t.(2分)

(2)S△QDC=
1
2
DQ×CD=
1
2
 ×
12t,S△PBC=
1
2
PB×BC=
1
2
×
5(12-2t),
則S=5×12-
1
2
×12t-
1
2
×5(12-2t)=30-t(6分)

(3)當AQ=AP時,5-t=2t(8分)
所以t=
5
3

所以,當t=
5
3
時,△QAP為等腰直角三角形(10分)
S=30-t=30-
5
3
=
85
3
.(12分)
點評:注意矩形的性質,即四個角都是直角,在等腰直角三角形中,兩條直角邊相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=6,AD=2
3
,點P是邊BC上的動點(點P不與點B,C重合),過點P作直線PQ∥BD,交CD邊于Q點,再把△PQC沿著動直線PQ對折,點C的對應點是R點.設CP=x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CPQ的度數(shù).
(2)當x取何值時,點R落在矩形ABCD的邊AB上?
(3)當點R在矩形ABCD外部時,求y與x的函數(shù)關系式.并求此時函數(shù)值y的取值范圍.
精英家教網精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在矩形ABCD中,AB=1,BC=2,E是CD邊的中點.點P從點A開始,沿逆時針方向在矩形邊上勻速運動,到點E停止.設點P經過的路程為x,△APE的面積為S,則S關于x的函數(shù)關系的大致圖象是( 。
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,E為BC上一動點,BE=kCE,ED交AC于點P,DQ⊥AC于Q,A精英家教網B=nBC
(1)當n=1,k=2時(如圖1),
CP
PQ
=
 
;
(2)當n=
2
,k=1時(如圖2),求證:CP=AQ;
(3)若k=1,當n=
 
時,有CP⊥DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在矩形ABCD中,AB=4cm,BC=8cm、點P從點D出發(fā)向點A運動,同時點Q從點B出發(fā)向點C運動,點P、Q的速度都是1cm/s.
(1)在運動過程中,經過
3
3
秒后,四邊形AQCP是菱形;
(2)菱形AQCP的周長為
20
20
cm、面積為
20
20
cm2

查看答案和解析>>

同步練習冊答案