精英家教網 > 初中數學 > 題目詳情

Rt△ABC中,∠C=90°,AB=17,sinA=數學公式,則BC=________.

8
分析:運用三角函數定義求解.
解答:在Rt△ABC中,∠C=90°,AB是斜邊,
∵AB=17,sinA=,
∴BC=AB•sinA=17×=8.
點評:本題考查的是運用三角函數定義解直角三角形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點E.又點F在DE的精英家教網延長線上,且AF=CE.求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在Rt△ABC中,∠BAC=90°,點D、E、F分別是三邊的中點,且CF=3cm,則DE=
 
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E、F在邊AB上,精英家教網點G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,Rt△ABC中,∠C=90°,D為AB的中點,DE⊥AB,AB=20,AC=12,則四邊形ADEC的面積為
 

查看答案和解析>>

同步練習冊答案