如圖所示,已知平面直角坐標(biāo)系xOy,拋物線過點(diǎn)A(4,0)、B(1,3)

【小題1】求該拋物線的表達(dá)式,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
【小題2】記該拋物線的對(duì)稱軸為直線l,設(shè)拋物線上的點(diǎn)P(m,n)在第四象限,點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于y軸的對(duì)稱點(diǎn)為F,若四邊形OAPF的面積為20,求m、n的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④.正確的是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,拋物線與y軸相交于點(diǎn)A,與過點(diǎn)A平行于x軸的直線相交于點(diǎn)B(點(diǎn)B在第一象限).拋物線的頂點(diǎn)C在直線OB上,對(duì)稱軸與x軸相交于點(diǎn)D.平移拋物線,使其經(jīng)過點(diǎn)A、D,則平移后的拋物線的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2013年5月26日,中國羽毛球隊(duì)蟬聯(lián)蘇迪曼杯團(tuán)體賽冠軍,成就了首個(gè)五連冠霸業(yè).比賽中羽毛球的某次運(yùn)動(dòng)路線可以看作是一條拋物線(如圖).若不考慮外力因素,羽毛球行進(jìn)高度y(米)與水平距離x(米)之間滿足關(guān)系,則羽毛球飛出的水平距離為     米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

二次函數(shù)y=﹣2(x﹣5)2+3的頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

用長為32米的籬笆圍一個(gè)矩形養(yǎng)雞場,設(shè)圍成的矩形一邊長為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場?如果能,請(qǐng)求出其邊長;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx﹣4與x軸交于A(﹣2,0),B(8,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC,以BC為一邊,作菱形BDEC,使其對(duì)角線在坐標(biāo)軸上,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求拋物線的解析式;
(2)將拋物線向上平移n個(gè)單位,使其頂點(diǎn)在菱形BDEC內(nèi)(不含菱形的邊),求n的取值范圍;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M.試探究m為何值時(shí),四邊形CQMD是平行四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)平面內(nèi),直線軸和軸分別交于A、B兩點(diǎn),二次函數(shù)的圖象經(jīng)過點(diǎn)A、B,且頂點(diǎn)為C.

(1)求這個(gè)二次函數(shù)的解析式;
(2)求的值;
(3)若P是這個(gè)二次函數(shù)圖象上位于軸下方的一點(diǎn),且ABP的面積為10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,邊長為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過兩次操作后得到的,其形狀為   ,求此時(shí)線段EF的長;
(2)若經(jīng)過三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為   ,此時(shí)AE與BF的數(shù)量關(guān)系是   ;
②以①中的結(jié)論為前提,設(shè)AE的長為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫出其邊長;如果不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案