年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:044
在一次數(shù)學(xué)課外活動中,小明給全班同學(xué)演示了一個(gè)有趣的變形,即在=0中,令,則有-2y+1=0.根據(jù)上述變形思想.解決小明給出的問題:在=0中,令x=,則可化為一個(gè)怎樣的關(guān)于x的方程,若是關(guān)于x的一元二次方程,請寫出二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時(shí),求
(2)當(dāng)為等邊三角形時(shí),求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題
若是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時(shí),求
(2)當(dāng)為等邊三角形時(shí),求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(解析版) 題型:解答題
若是關(guān)于的一元二次方程的兩個(gè)根,則方程的兩個(gè)根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個(gè)交點(diǎn)間的距離為:
請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時(shí),求
(2)當(dāng)為等邊三角形時(shí),求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com