精英家教網(wǎng)如圖,在直線m上擺放著三個(gè)正三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F(xiàn)、G分別是BC、CE的中點(diǎn),F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個(gè)平行四邊形的面積依次是S1,S,S3,若S1+S3=10,則S=
 
分析:根據(jù)題意,可以證明S與S1兩個(gè)平行四邊形的高相等,長(zhǎng)是S1的2倍,S3與S的長(zhǎng)相等,高是S3的一半,這樣就可以把S1和S3用S來(lái)表示,從而計(jì)算出S的值.
解答:精英家教網(wǎng)解:根據(jù)正三角形的性質(zhì),∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF∥DC∥GN,
設(shè)AC與FH交于P,CD與HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分別是BC、CE的中點(diǎn),
∴BF=MF=
1
2
AC=
1
2
BC,CP=PF=
1
2
AB=
1
2
BC
∴CP=MF,CQ=BC,QG=GC=CQ=AB,
∴S1=
1
2
S,S3=2S,
∵S1+S3=10,
1
2
S+2S=10,
∴S=4.
故答案為:4.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)及平行四邊形的面積求法,平行四邊形的面積等于平行四邊形的邊長(zhǎng)與該邊上的高的積.即S=a•h.其中a可以是平行四邊形的任何一邊,h必須是a邊與其對(duì)邊的距離,即對(duì)應(yīng)的高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直線m上擺放著三個(gè)正三角形:△ABC、△HFG、△DCE,已知BC=GE,F(xiàn)、G分別是BC、CE的中點(diǎn),F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個(gè)平行四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S2等于( 。
A、7B、8C、9D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問(wèn)題:
精英家教網(wǎng)
(1)旋轉(zhuǎn):將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°,請(qǐng)你在圖中作出旋轉(zhuǎn)后的對(duì)應(yīng)圖形△A1B1C,并求出AB1的長(zhǎng)度;
(2)翻折:將△A1B1C沿過(guò)點(diǎn)B1且與直線l垂直的直線翻折,得到翻折后的對(duì)應(yīng)圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說(shuō)明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當(dāng)y等于△ABC面積的一半時(shí),x的值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南模擬)如圖,在直線l上擺放著三個(gè)等邊三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F(xiàn)、G分別是BC、CE的中點(diǎn),F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個(gè)平行四邊形的面積一依次是S1,S2,S3,若S1+S3=10,則S2=
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(48):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問(wèn)題:

(1)旋轉(zhuǎn):將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°,請(qǐng)你在圖中作出旋轉(zhuǎn)后的對(duì)應(yīng)圖形△A1B1C,并求出AB1的長(zhǎng)度;
(2)翻折:將△A1B1C沿過(guò)點(diǎn)B1且與直線l垂直的直線翻折,得到翻折后的對(duì)應(yīng)圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說(shuō)明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當(dāng)y等于△ABC面積的一半時(shí),x的值是多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案