【題目】張老師利用休息時(shí)間組織學(xué)生測(cè)量山坡上一棵大樹CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測(cè)得大樹頂端點(diǎn)C的仰角為45°,沿坡面前進(jìn)20米,到達(dá)B處,又測(cè)得樹頂端點(diǎn)C的仰角為60°(圖中各點(diǎn)均在同一平面內(nèi)),求這棵大樹CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.732)
【答案】11.5米
【解析】
試題分析:過B作BE⊥CD交CD延長(zhǎng)線于E,由∠CAN=45°,∠MAN=30°,得到∠CAB=15°,由∠CBD=60°,∠DBE=30°,得到∠CBD=30°于是有∠CAB=∠ACB=15°所以AB=BC=20,解Rt△BCE,可求得CE,解Rt△DBE可求得DE,CE﹣DE即得到樹高CD.
解:如圖,過B作BE⊥CD交CD延長(zhǎng)線于E,
∵∠CAN=45°,∠MAN=30°,
∴∠CAB=15°
∵∠CBE=60°,∠DBE=30°,
∴∠CBD=30°,
∵∠CBE=∠CAB+∠ACB,
∴∠CAB=∠ACB=15°,
∴AB=BC=20,
在Rt△BCE中,∠CBE=60°,BC=20,
∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,
在Rt△DBE中,∠DBE=30°,BE=10,
∴DE=BEtan∠DBE=10×,
∴CD=CE﹣DE=≈11.5,
答:這棵大樹CD的高度大約為11.5米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,AE平分∠BAC.
(1)若∠C=70°,∠B=40°,求∠DAE的度數(shù)
(2)若∠C-∠B=30°,則∠DAE=________.
(3)若∠C-∠B=(∠C>∠B),求∠DAE的度數(shù)(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一紙箱中裝有5個(gè)只有顏色不同的球,其中2個(gè)白球,3個(gè)紅球.
(1)求從箱中隨機(jī)取出一個(gè)白球的概率是 ;
(2)若往裝有5個(gè)球的原紙箱中,再放入x個(gè)白球和y個(gè)紅球,從箱中隨機(jī)取出一個(gè)白球的概率是,則y與x的函數(shù)解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(1)是一個(gè)蒙古包的照片,這個(gè)蒙古包可以近似看成是圓錐和圓柱組成的幾何體,如圖(2)所示.
(1)請(qǐng)畫出這個(gè)幾何體的俯視圖;
(2)圖(3)是這個(gè)幾何體的正面示意圖,已知蒙古包的頂部離地面的高度EO1=6米,圓柱部分的高OO1=4米,底面圓的直徑BC=8米,求∠EAO的度數(shù)(結(jié)果精確到0.1°).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)的光伏技術(shù)不斷進(jìn)步,電子元件的尺寸大幅度縮小,在芯片上某種電子元件大約只占0.000 000 7 mm2,這個(gè)數(shù)用科學(xué)記數(shù)法表示為( )
A. 7×10-6 mm2 B. 0.7×10-6 mm2 C. 7×10-7 mm2 D. 70×10-8 mm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊四邊形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求這塊草地的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com