【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說(shuō)法中:①ac0;②方程ax2+bx+c0的根是x1=﹣1x23;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減;⑤2ab0;⑥b24ac0.下列結(jié)論一定成立的是(

A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④

【答案】B

【解析】

根據(jù)二次函數(shù)圖象和性質(zhì)可以判斷各個(gè)小題中的結(jié)論是否成立,從而可以解答本題.

根據(jù)圖像分析,拋物線向上開口,a0;拋物線與y軸交點(diǎn)在y軸的負(fù)半軸,c<0;坐標(biāo)軸在右邊,根據(jù)左同右異,可知ba異號(hào),b<0;與坐標(biāo)軸有兩個(gè)交點(diǎn),那么△>0,根據(jù)這些信息再結(jié)合函數(shù)性質(zhì)判斷即可.

解:

由圖象可得,a>0,c<0,ac<0,故正確,
方程當(dāng)y=0時(shí),代入y=ax2+bx+c,求得根是x1=-1,x2=3,故正確,
當(dāng)x=1時(shí),y=a+b+c<0,故正確,
④∵該拋物線的對(duì)稱軸是直線x=

當(dāng)x>1時(shí),y隨x的增大而增大,故錯(cuò)誤,
則2a=-b,那么2a+b=0,故錯(cuò)誤,
⑥∵拋物線與x軸兩個(gè)交點(diǎn),b2-4ac>0,故正確,
故正確的為. ①②③⑥選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)域?yàn)轫憫?yīng)“綠水青山就是金山銀山”的號(hào)召,加強(qiáng)了綠化建設(shè).為了解該區(qū)域群眾對(duì)綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個(gè)片區(qū)進(jìn)行了調(diào)查,得到如下不完整統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中信息,解決下列問(wèn)題:

(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;

(2)興趣小組準(zhǔn)備從“不滿意”的4位群眾中隨機(jī)選擇2位進(jìn)行回訪,已知這4位群眾中有2位來(lái)自甲片區(qū),另2位來(lái)自乙片區(qū),請(qǐng)用畫樹狀圖或列表的方法求出選擇的群眾來(lái)自甲片區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個(gè)實(shí)根x1x2

(1) 求實(shí)數(shù)k的取值范圍

(2) 若方程兩實(shí)根x1、x2滿足x12-x22=0,求k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過(guò)點(diǎn)C的切線互相垂直,垂足為EAE交⊙O于點(diǎn)D,直線ECAB的延長(zhǎng)線于點(diǎn)P,連接AC、BC.

1)求證:AC平分∠BAD.

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象與兩坐標(biāo)軸圍成的三角形的面積是8,且過(guò)點(diǎn),求此一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)某一區(qū)域進(jìn)行綠化,安排甲.乙 兩個(gè)工程隊(duì)完成;已知甲隊(duì)每天能完成綠化面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為400 區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,求甲.乙兩工程隊(duì)每天能完成綠化的面積分別是多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量山坡上一棵樹PQ的高度,小明在點(diǎn)A處利用測(cè)角儀測(cè)得樹頂P的仰角為450 ,然后他沿著正對(duì)樹PQ的方向前進(jìn)10m到達(dá)B點(diǎn)處,此時(shí)測(cè)得樹頂P和樹底Q的仰角分別是600300,設(shè)PQ垂直于AB,且垂足為C.

(1)求∠BPQ的度數(shù);

(2)求樹PQ的高度(結(jié)果精確到0.1m,

查看答案和解析>>

同步練習(xí)冊(cè)答案