如圖,在平面直角坐標系xOy中,把矩形COAB繞點C順時針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點H,且A(0,4),C(6,0)(如圖1).
(1)當α=60°時,△CBD的形狀是______;
(2)當AH=HC時,求直線FC的解析式;
(3)當α=90°時,(如圖2).請?zhí)骄浚航?jīng)過點D,且以點B為頂點的拋物線,是否經(jīng)過矩形CFED的對稱中心M,并說明理由.
(1)∵圖形旋轉(zhuǎn)后BC=CD,∠BCD=∠α=60°
∴△BCD是等邊三角形;

(2)設(shè)AH=x,則HB=AB-AH=6-x,
依題意可得:AB=OC=6,BC=OA=4,
在Rt△BHC中,HC2=BC2+HB2
即x2-(6-x)2=16,
解得x=
13
3

∴H(
13
3
,4).
設(shè)y=kx+b,把H(
13
3
,4),C(6,0)代入y=kx+b,
13
3
k+b=4
6k+b=0

解得
k=-
12
5
b=
72
5

∴y=-
12
5
x+
72
5


(3)拋物線頂點為B(6,4),
設(shè)y=a(x-6)2+4,
把D(10,0)代入得:a=-
1
4

∴y=-
1
4
(x-6)2+4(或y=-
1
4
x2+3x-5).
依題可得,點M坐標為(8,3),
把x=8代入y=-
1
4
(x-6)2+4,得y=3.
∴拋物線經(jīng)過矩形CFED的對稱中心M.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應(yīng)的二次函數(shù)解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(-1,0),(0,2),當y隨x的增大而增大時,x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0)、E(5,0)兩點,與y軸交于點B(0,5).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)題中的拋物線上有一個動點P,當點P在拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標;
(3)設(shè)(1)題中的拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子.設(shè)剪去的正方形邊長為x(cm),折成的長方體盒子的側(cè)面積為y(cm2),底面積為S(cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44(cm2)時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-2ax+3的圖象與x軸交于點A,點B,與y軸交于點C,其頂點為D,直線DC的函數(shù)關(guān)系式為y=kx+b,又tan∠OBC=1.
(1)求二次函數(shù)的解析式和直線DC的函數(shù)關(guān)系式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,鉛球的出手點C距地面1米,出手后的運動路線是拋物線,出手后4秒鐘達到最大高度3米,則鉛球運行路線的解析式為( 。
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

同步練習冊答案