如圖1,是邊長(zhǎng)分別為4和3的兩個(gè)等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試說(shuō)明理由;
(2)操作:固定△ABC,若將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線交AB于點(diǎn)F,在線段CF上沿著CF方向以每秒1個(gè)單位長(zhǎng)的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個(gè)三角形是等腰三角形?寫(xiě)出你的結(jié)論并說(shuō)明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點(diǎn)P移動(dòng)至F點(diǎn),求此時(shí)QH的長(zhǎng)度.
(1)BE=AD
證明:由題意可得,BC=AC,CE=CD,
∵∠BCE+∠ACE=60°∠ACE+∠ACD=60°
∴∠BCE=∠ACD,
∴△BCE≌△ACD,
∴BE=AD.

(2)△HQC為等腰三角形
證明:因?yàn)椤螰CB=30°,
所以∠ACF=30°,
又因?yàn)椤蟁QP=60°,
所以∠QHC=∠HCQ=30°,
所以△HQC為等腰三角形;

(3)由題意得,AF=2,在Rt△AFG中,F(xiàn)G=
3
,所以GR=3-
3

在Rt△GRH中,RH=2(3-
3
),
所以HQ=3-2(3-
3
)=2
3
-3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:如圖,AB是⊙O的直徑,半徑OC⊥AB,過(guò)CO的中點(diǎn)D作DEAB交⊙O于點(diǎn)E,連接EO,則∠EOC的度數(shù)為_(kāi)_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰三角形的底角為15°,腰長(zhǎng)為2a,則腰上的高為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,則∠CDE=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰三角形兩邊長(zhǎng)為3和6,則此等腰三角形的周長(zhǎng)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖△ABC中,AB=AC,角平分線AD、BD相交于點(diǎn)D.若∠ABC=80°,則∠ADB等于(  )
A.100°B.110°C.120°D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)A(1,2),在y軸的正半軸上確定點(diǎn)P,使△AOP為等腰三角形,則點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD中,AB<BC,對(duì)角線AC、BD相交于點(diǎn)O,則圖中的等腰三角形有(  )
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案