如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針?lè)较蛐?0°轉(zhuǎn)后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B。
(1)寫(xiě)出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S。
i)試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
ii)當(dāng)x為何值時(shí),S的面積最大?最大值是多少?
iii)是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫(xiě)出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
解:(1) ,
設(shè)直線AB的解析式
則有,解得
∴直線AB的解析式為;
(2)i)①點(diǎn)E在原點(diǎn)和x軸正半軸上時(shí),重疊部分是,


當(dāng)E與O重合時(shí),

②當(dāng)E在x軸的負(fù)半軸上時(shí),設(shè)DE與y軸交于點(diǎn)F,則重疊部分為梯形,



又∵,


當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),點(diǎn)C的坐標(biāo)為,

綜合①②得
ii)①當(dāng)時(shí),
∴ 對(duì)稱軸是x=4,
∵拋物線開(kāi)口向上,
∴在中,S隨x的增大而減小,
∴當(dāng)x=2時(shí),S的最大值=,
②當(dāng)時(shí),
∴對(duì)稱軸是
∵拋物線開(kāi)口向下,
∴當(dāng)時(shí),S有最大值為,
∴綜合①②當(dāng)時(shí),S有最大值為 
iii)存在,點(diǎn)C的坐標(biāo)為
詳解:①當(dāng)以點(diǎn)A為直角頂點(diǎn)時(shí),作交x軸負(fù)半軸于點(diǎn)E,




∴點(diǎn)E坐標(biāo)為(-1,0),
∴點(diǎn)C的坐標(biāo)為
②當(dāng)以點(diǎn)E為直角頂點(diǎn)時(shí),同樣有



∴點(diǎn)C的坐標(biāo)
綜合①②知滿足條件的坐標(biāo)有。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、若二次函數(shù)y=ax2+bx+c的圖象如圖,則點(diǎn)(a+b,ac)在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)模擬)已知:點(diǎn)A、B都在半徑為9的圓O上,P是射線OA上一點(diǎn),以PB為半徑的圓P與圓O相交的另一個(gè)交點(diǎn)為C,直線OB與圓P相交的另一個(gè)交點(diǎn)為D,cos∠AOB=
23

(1)求:公共弦BC的長(zhǎng)度;
(2)如圖,當(dāng)點(diǎn)D在線段OB的延長(zhǎng)線上時(shí),設(shè)AP=x,BD=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)如果直線PD與射線CB相交于點(diǎn)E,且△BDE與△BPE相似,求線段AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通)如圖,經(jīng)過(guò)點(diǎn)A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1、l2經(jīng)過(guò)K(2,2)
(1)如圖1,直線l2⊥l1于K.直線l1分別交x軸、y軸于A點(diǎn)、B點(diǎn),直線l2,分別交x軸、y軸于C、D,求OB+OC的值;
(2)在第(1)問(wèn)的條件下,求S△ACK-S△OCD的值:
(3)在第(2)問(wèn)的條件下,如圖2,點(diǎn)J為AK上任一點(diǎn)(J不于點(diǎn)A、K重合),過(guò)A作AE⊥DJ于E,連接EK,求∠DEK的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,這是一個(gè)五角星ABCDE,你能計(jì)算出∠A+∠B+∠C+∠D+∠E的度數(shù)嗎?為什么?(必須寫(xiě)推理過(guò)程) 
(2)如圖2,如果點(diǎn)B向右移動(dòng)到AC上,那么還能求出∠A+∠DBE+∠C+∠D+∠E的大小嗎?若能結(jié)果是多少?(可不寫(xiě)推理過(guò)程)
(3)如圖,當(dāng)點(diǎn)B向右移動(dòng)到AC的另一側(cè)時(shí),上面的結(jié)論還成立嗎?
(4)如圖4,當(dāng)點(diǎn)B、E移動(dòng)到∠CAD的內(nèi)部時(shí),結(jié)論又如何?根據(jù)圖3或圖4,說(shuō)明你計(jì)算的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案