【題目】某公司計劃在某地區(qū)銷售一款5G產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價格將隨銷售周期的變化而變化.該產(chǎn)品在第x周(x為正整數(shù),且1≤x≤8)個銷售周期的銷售價格為y元,y與x之間滿足如圖所示的一次函數(shù).
(1)求y與x之間的函數(shù)關(guān)系;
(2)產(chǎn)品在第x個銷售周期的銷售數(shù)量為p萬臺,p與x之間滿足:.已知在某個銷售周期的銷售收入是16000萬元,求此時該產(chǎn)品的銷售價格是多少元?
【答案】(1)y=﹣500x+7500;(2)4000元
【解析】
(1)根據(jù)函數(shù)圖象上的兩點坐標(biāo),用待定系數(shù)法求出函數(shù)的解析式便可;
(2)根據(jù)銷售收入=銷售單價×銷售數(shù)量和.據(jù)此列出方程并解答.
解:(1)設(shè)函數(shù)的解析式為:y=kx+b(k≠0),
將 代入解析式中得
解得
∴y與x之間的關(guān)系式:y=﹣500x+7500;
(2)根據(jù)題意得,(﹣500x+7500)(x+)=16000,
解得x=7,
此時y=﹣500×7+7500=4000(元)
答:此時該產(chǎn)品每臺的銷售價格是4000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)為A(﹣4,1),B(﹣2,3),C(﹣1,2).
(1)畫出△ABC關(guān)于原點O成中心對稱的△A′B′C′,點A′,B′,C′分別是點A,B,C的對應(yīng)點.
(2)求過點B′的反比例函數(shù)解析式.
(3)判斷A′B′的中點P是否在(2)的函數(shù)圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△PAB中,PA=PB,經(jīng)過A、B作⊙O.
(1)如圖1,連接PO,求證:PO平分∠APB;
(2)如圖2,點P在⊙O上,PA:AB=:2,E是⊙O上一點,連接AE、BE.求tan∠AEB的值;
(3)如圖3,在(2)的條件下,AE經(jīng)過圓心O,AE交PB于點F,過F作FG⊥BE于點G,EF+BG=14,求線段OF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,點C在半圓O上,AB=8,∠CAB=60°,P是弧上的一個點,連接AP,過點C作CD⊥AP于點D,連接BD,在點P移動過程中,BD長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1).
(1)以O點為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)B點的對應(yīng)點B′的坐標(biāo)是 ;C點的對應(yīng)點C′的坐標(biāo)是 ;
(3)在BC上有一點P(x,y),按(1)的方式得到的對應(yīng)點P′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖象如圖所示,則下列結(jié)論:
;
;
點、、是該拋物線上的點,則;
;
(為任意實數(shù)).
其中正確結(jié)論的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點.
(1)求A、B兩點的坐標(biāo);
(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;
(3)坐標(biāo)原點為O,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O 的直徑,CD是⊙O的一條弦,且CD⊥AB于點E.
(1)求證:∠BCO=∠D;
(2)若CD=,AE=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com