【題目】圖形既關于點O中心對稱,又關于直線AC,BD對稱,AC=10,BD=6,已知點E,M是線段AB上的動點(不與端點重合),點O到EF,MN的距離分別為h1 , h2 , △OEF與△OGH組成的圖形稱為蝶形.
(1)求蝶形面積S的最大值;
(2)當以EH為直徑的圓與以MQ為直徑的圓重合時,求h1與h2滿足的關系式,并求h1的取值范圍.
【答案】
(1)解:由題意,得四邊形ABCD是菱形.
∵EF∥BD,
∴△ABD∽△AEF,
∴ ,即
∴
所以當 時,
(2)解:根據(jù)題意,得OE=OM.
如圖,作OR⊥AB于R,OB關于OR對稱線段為OS,
① 當點E,M不重合時,則OE,OM在OR的兩側,易知RE=RM.
∵ ,
∴ ,
∴
由ML∥EK∥OB,
得 ∴ ,
即
∴ ,此時h1的取值范圍為 且 ,
②當點E,M重合時,則h1=h2,此時h1的取值范圍為0<h1<5.
【解析】(1)由題意,得四邊形ABCD是菱形,根據(jù)EF∥BD,求證△ABD∽△AEF,然后利用其對邊成比例求得EF,然后利用三角形面積公式即可求得蝶形面積S的最大值.(2)根據(jù)題意,得OE=OM.作OR⊥AB于R,OB關于OR對稱線段為OS,①當點E,M不重合時,則OE,OM在OR的兩側,可知RE=RM.利用勾股定理求得BR,由ML∥EK∥OB,利用平行線分線段求得 即可知h1的取值范圍;②當點E,M重合時,則h1=h2 , 此時可知h1的取值范圍.
【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對軸對稱的性質的理解,了解關于某條直線對稱的兩個圖形是全等形;如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線;兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上.
科目:初中數(shù)學 來源: 題型:
【題目】2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業(yè)水平、學業(yè)負擔、身心發(fā)展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統(tǒng)計圖.
根據(jù)上述信息,解答下列問題:
(1)本次抽取的學生人數(shù)是;扇形統(tǒng)計圖中的圓心角α等于;補全統(tǒng)計直方圖;
(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】多多班長統(tǒng)計去年1~8月“書香校園”活動中全班同學的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計圖,下列說法正確的是( )
A.極差是47
B.眾數(shù)是42
C.中位數(shù)是58
D.每月閱讀數(shù)量超過40的有4個月
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市水產養(yǎng)殖專業(yè)戶王大爺承包了30畝水塘,分別養(yǎng)殖甲魚和桂魚,有關成本、銷售情況如下表:
養(yǎng)殖種類 | 成本(萬元/畝) | 銷售額(萬元/畝) |
甲魚 | 2.4 | 3 |
桂魚 | 2 | 2.5 |
(1)2010年,王大爺養(yǎng)殖甲魚20畝,桂魚10畝,求王大爺這一年共收益多少萬元?(收益=銷售額﹣成本)
(2)2011年,王大爺繼續(xù)用這30畝水塘全部養(yǎng)殖甲魚和桂魚,計劃投入成本不超過70萬元.若每畝養(yǎng)殖的成本、銷售額與2010年相同,要獲得最大收益,他應養(yǎng)殖甲魚和桂魚各多少畝?
(3)已知甲魚每畝需要飼料500kg,桂魚每畝需要飼料700kg,根據(jù)(2)中的養(yǎng)殖畝數(shù),為了節(jié)約運輸成本,實際使用的運輸車輛每次裝載飼料的總量是原計劃每次裝載總量的2倍,結果運輸養(yǎng)殖所需要全部飼料比原計劃減少了2次,求王大爺原定的運輸車輛每次可裝載飼料多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB= ,AC= ,BC=1.
(1)求證:∠A≠30°;
(2)將△ABC繞BC所在直線旋轉一周,求所得幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2﹣4x+3與x軸交于A、B兩點(點A在點B的左側),點C是此拋物線的頂點.
(1)求點A、B、C的坐標;
(2)點C在反比例函數(shù)(k≠0)的圖象上,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某小區(qū)某月家庭用水量的情況,從該小區(qū)隨機抽取部分家庭進行調查,以下是根據(jù)調查數(shù)據(jù)繪制的統(tǒng)計圖表的一部分
分組 | 家庭用水量x/噸 | 家庭數(shù)/戶 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>4.0 | 3 |
根據(jù)以上信息,解答下列問題
(1)家庭用水量在4.0<x≤6.5范圍內的家庭有戶,在6.5<x≤9.0范圍內的家庭數(shù)占被調查家庭數(shù)的百分比是%;
(2)本次調查的家庭數(shù)為戶,家庭用水量在9.0<x≤11.5范圍內的家庭數(shù)占被調查家庭數(shù)的百分比是%;
(3)家庭用水量的中位數(shù)落在組;
(4)若該小區(qū)共有200戶家庭,請估計該月用水量不超過9.0噸的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于拋物線y=x2﹣2x+1,下列說法錯誤的是( 。
A.開口向上
B.與x軸有兩個重合的交點
C.對稱軸是直線x=1
D.當x>1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com