已知:如圖,在平面直角坐標(biāo)系中,以點(diǎn)A(4,0)為圓心,AO為半徑的圓交x軸于點(diǎn)B.設(shè)M為x精英家教網(wǎng)軸上方的圓長交y軸于點(diǎn)D.
(1)當(dāng)點(diǎn)P在弧OM上運(yùn)動時,設(shè)PC=x,
OCOD
=y,求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當(dāng)點(diǎn)P運(yùn)動到某一位置時,恰使OB=3OD,求此時AC所在直線的解析式.
分析:(1)延長PA交⊙A于E,連接OE,根據(jù)圓的相關(guān)性質(zhì),構(gòu)造相似比,可求一次函數(shù)關(guān)系式;
(2)已知A點(diǎn)坐標(biāo),再運(yùn)用勾股定理求OC的長,從而可求C點(diǎn)坐標(biāo),利用“兩點(diǎn)法”求一次函數(shù)解析式.
解答:精英家教網(wǎng)解:(1)延長PA交⊙A于E,連接OE,
∵AO=AE,
∴∠BOE=∠E.
又∵∠PBO=∠E,
∴∠BOE=∠PBO,
∴DB∥OE,
OC
OD
=
CE
PE

又∵
OC
OD
=y
,PC=x,PE=2OA=8,CE=CP+PE=x+8
y=
x+8
8
,即y=
1
8
x+1(2分)
當(dāng)點(diǎn)P運(yùn)動到點(diǎn)M時,連接AM并延長交y軸于點(diǎn)F,設(shè)∠OAM=n°,
∴n=60,即∠OAM=60°.
∵OC⊥OB,∴AF=2OA=8,∴MF=4,∴x≤4,
即0<x≤4.

(2)當(dāng)P運(yùn)動到恰使OB=3OD時,即OD=
1
3
OB=
8
3

OC
OD
=y

OC=OD•y=
x+8
3

在Rt△AOC中,OA2+OC2=AC2
(
x+8
3
)
2
+42=(x+4)2
(1分)
整理的x2+7x-8=0
∴x1=1,x2=-8(舍去)
∴OC=3
∴C(0,3)(2分)
設(shè)過A、C兩點(diǎn)的直線解析式為y=kx+b,
b=3
0=4k+b
k=-
3
4
b=3

∴直線AC的解析式為y=-
3
4
x+3
(2分)
點(diǎn)評:本題考查了相似三角形的性質(zhì),待定系數(shù)法求一次函數(shù)解析式的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個單位/秒速度沿x軸正向運(yùn)動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運(yùn)動 ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,直線也隨即停止運(yùn)動.

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運(yùn)動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點(diǎn)O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點(diǎn)落在X軸上為點(diǎn)B.有人在線段OB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習(xí)冊答案