【題目】如圖,在⊙O中,點D是⊙O上的一點,點C是直徑AB延長線上一點,連接BD,CD,且∠A=∠BDC.
(1)求證:直線CD是⊙O的切線;
(2)若CM平分∠ACD,且分別交AD,BD于點M,N,當(dāng)DM=2時,求MN的長.
【答案】(1)見解析;(2)MN=2.
【解析】
(1)如圖,連接OD.欲證明直線CD是⊙O的切線,只需求得∠ODC=90°即可;
(2)由角平分線及三角形外角性質(zhì)可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據(jù)勾股定理可求得MN的長.
(1)證明:如圖,連接OD.
∵AB為⊙O的直徑,
∴∠ADB=90°,即∠A+∠ABD=90°,
又∵OD=OB,
∴∠ABD=∠ODB,
∵∠A=∠BDC;
∴∠CDB+∠ODB=90°,即∠ODC=90°.
∵OD是圓O的半徑,
∴直線CD是⊙O的切線;
(2)解:∵CM平分∠ACD,
∴∠DCM=∠ACM,
又∵∠A=∠BDC,
∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,
∵∠ADB=90°,DM=2,
∴DN=DM=2,
∴MN==2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.了解全市中學(xué)生對社會主義核心價值觀的知曉度的情況,適合用抽樣調(diào)查
B.若甲組數(shù)據(jù)方差S2甲=0.39,乙組數(shù)據(jù)方差S2乙=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C.某種彩票中獎的概率是,買100張該種彩票一定會中獎
D.旅客上飛機前的安檢應(yīng)該進行全面調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與軸交于點、,與軸交于點,直線經(jīng)過點、.
(1)求拋物線的表達式;
(2)過點的直線交拋物線于點,交直線于點,連接,當(dāng)直線平分的面積時,求點的坐標(biāo);
(3)如圖所示,把拋物線位于軸上方的圖象沿軸翻折,當(dāng)直線與翻折后的整個圖象只有三個交點時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣x+c經(jīng)過A(﹣2,0),B(0,2)兩點,動點P,Q同時從原點出發(fā)均以1個單位/秒的速度運動,動點P沿x軸正方向運動,動點Q沿y軸正方向運動,連接PQ,設(shè)運動時間為t秒
(1)求拋物線的解析式;
(2)當(dāng)BQ=AP時,求t的值;
(3)隨著點P,Q的運動,拋物線上是否存在點M,使△MPQ為等邊三角形?若存在,請求出t的值及相應(yīng)點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為迎接縣中學(xué)生籃球比賽,計劃購買A、B兩種籃球共20個供學(xué)生訓(xùn)練使用.若購買A種籃球6個,則購買兩種籃球共需費用720元;若購買A種籃球12個,則購實兩種籃球共需費用840元.
(1)A、B兩種籃球共需單價各多少元?
(2)設(shè)購買A種籃球x個且A種籃球不少于8個,所需費用為y元,試確定y與x的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:甲、乙兩地相距,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,線段和折線分別表示貨車和轎車離甲地的距離與貨車出發(fā)時間之間的函數(shù)關(guān)系,請根據(jù)圖象解答下列問題:
(1)貨車的速度為___________,當(dāng)轎車到達乙地后,貨車距乙地的距離為____________千米;
(2)求轎車改變速度后與的函數(shù)關(guān)系式;
(3)轎車到達乙地后,馬上沿原路以段速度返回,求轎車從乙地出發(fā)后多長時間再次與貨車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線.
(2)若BC=2,sin∠BCP=,求點B到AC的距離.
(3)在第(2)的條件下,求△ACP的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com