【題目】如圖,園林小組的同學(xué)用一段長16米的籬笆圍成一個一邊靠墻的矩形菜園ABCD,墻的長度為9米,設(shè)AB的長為x米,BC的長為y米.
(1)①寫出y與x的函數(shù)關(guān)系是: ;
②自變量x的取值范圍是 ;
(2)園林小組的同學(xué)計劃使矩形菜園的面積為30平方米,試求此時邊AB的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C為線段AB上的一點,△ACM和△CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點.求證:△CEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形,探究在第n個圖中,黑、白瓷磚分別各有多少塊( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.
(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.
(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;
(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最?如果存在,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D為AC延長線上一點,連接BD,AE⊥BD于點E.
(1)記△ABC得外接圓為⊙0,
①請用文字描述圓心0的位置;
②求證:點E一定在⊙0上.
(2)將射線AE繞點A順時針旋轉(zhuǎn)45°后,所得到的射線與BD延長線交于點F,連接CF,CE.
①依題意補(bǔ)全圖形;
②用等式表示線段AF,CE,BE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運(yùn)動,到達(dá)C點、B點后運(yùn)動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數(shù);
拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC周長為20cm,BC=6cm,圓O是△ABC的內(nèi)切圓,圓O的切線MN與AB、CA相交于點M、N,則△AMN的周長為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中直徑AB⊥弦CD于E,點F是的中點,CF交AB于I,連接BD、AC、AD.
(1)求證:BI=BD;
(2)若OI=1,OE=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com