若實數(shù)a、b、c、d滿足a2+b2+c2+d2=10,則y=(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2的最大值是 .
【答案】分析:首先由性質(zhì):a2+b2≥2ab,即可求得3(a2+b2+c2+d2)≥2ab+2ac+2ad+2bc+2bd+2cd,又由3(a2+b2+c2+d2)≥0與a2+b2+c2+d2=10,即可求得2ab+2ac+2ad+2bc+2bd+2cd的取值范圍,計算出y的值,則可求得y的最大值.
解答:解:∵a2+b2+c2+d2=10,
∴y=(a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2,
=a2+b2-2ab+a2+c2-2ac+b2+c2-2bc+b2+d2-2bd+c2+d2-2cd,
=3(a2+b2+c2+d2)-2ab-2ac-2ad-2bc-2bd-2cd,
=4(a2+b2+c2+d2)-(a+b+c+d)2,
=40-(a+b+c+d)2,
∵(a+b+c+d)2≥0,
∴當(a+b+c+d)2=0時,y的最大值為40.
故答案為:40.
點評:此題考查了函數(shù)最值問題.注意a2+b2≥2ab性質(zhì)的應用,還要注意整體思想的應用.