求證:四個連續(xù)整數(shù)的積加1是某個整數(shù)的平方.

答案:
解析:

a(a1)(a2)(a3)1(a23a)(a23a2)1(a23a)2(a23a)1(a23a1)2


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們已經知道了一些特殊的勾股數(shù),如三個連續(xù)整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;由此發(fā)現(xiàn)勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)如果a、b、c是一組勾股數(shù),即滿足a2+b2=c2,求證:ka、kb、kc(k為正整數(shù))也是一組勾股數(shù).
(2)另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),如
①公式a=m2-n2,b=2mn,c=m2+n2(m、n為整數(shù),m>n,m>1)
②世界上第一次給出的勾股數(shù)的公式,被收集在《九章算術》中a=
1
2
(m2-n2)
,b=mn,c=
1
2
(m2+n2)
(m、n為正整數(shù),m>n)
③公元前427-公元前347,由柏拉圖提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n為整數(shù))
④畢達哥拉斯學派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù)),請你在上述的四個公式中選擇一種加以證明,滿足公式的a、b、c是一組勾股數(shù)
(3)請根據(jù)你在(2)中所選的公式寫出一組勾股數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

求證:四個連續(xù)自然數(shù)的積與1的和,必是某一個整數(shù)的平方。

 

查看答案和解析>>

科目:初中數(shù)學 來源:新課標讀想練八年級數(shù)學(上) 題型:047

求證:四個連續(xù)整數(shù)的乘積與1的和必是一個完全平方數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們已經知道了一些特殊的勾股數(shù),如三個連續(xù)整數(shù)中的勾股數(shù):3、4、5;三個連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;由此發(fā)現(xiàn)勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).
(1)如果a、b、c是一組勾股數(shù),即滿足a2+b2=c2,求證:ka、kb、kc(k為正整數(shù))也是一組勾股數(shù).
(2)另外利用一些構成勾股數(shù)的公式也可以寫出許多勾股數(shù),如
①公式a=m2-n2,b=2mn,c=m2+n2(m、n為整數(shù),m>n,m>1)
②世界上第一次給出的勾股數(shù)的公式,被收集在《九章算術》中數(shù)學公式,b=mn,數(shù)學公式(m、n為正整數(shù),m>n)
③公元前427-公元前347,由柏拉圖提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n為整數(shù))
④畢達哥拉斯學派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù)),請你在上述的四個公式中選擇一種加以證明,滿足公式的a、b、c是一組勾股數(shù)
(3)請根據(jù)你在(2)中所選的公式寫出一組勾股數(shù).

查看答案和解析>>

同步練習冊答案