我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形,請解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘蔷四邊形中兩條對角線所夾銳角為60。時,這對60。角所對的兩邊之和與其中一條對角線的大小關(guān)系,并證明你的結(jié)論。
解:(1)如正方形、矩形、等腰梯形等,(答案不唯一);
 (2)結(jié)論:等對角線四邊形中兩條對角線所夾銳角為60。時,這對60。角所對的兩邊之和大于或等于一條對角線的長。
已知:四邊形ABCD中,對角線AC,BD交于點(diǎn)O,AC=BD,且∠AOD=60。
求證:BC+AD≥AC。
證明:過點(diǎn)D作DF∥AC,在DF上截取DE,使DE=AC
連結(jié)CE,BE,故∠EDO=60。,
四邊形ACED是平行四邊形
所以△BDE是等邊三角形,CE=AD
所以DE=BE=AC
①當(dāng)BC與CE不在同一條直線上時(如圖(1)),
在△BCE中,有BC+CE>BE
所以.BC+AD>AC。                 
  ②當(dāng)BC與CE在同一條直線上時(如圖(2)),則BC+CE=BE
因此BC+AD=AC
綜合①、②,得BC+AD≥AC
即等對角線四邊形中兩條對角線所夾角為60。時,這對60角所對的兩邊之和大于或等于其中一條對角線的長。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)除了正方形外,寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形
;
(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請你畫出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對角線相等的勾股四邊形OAMB,并寫出點(diǎn)M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱
矩形
正方形
;
(2)如圖,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請你畫出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對角線相等的勾股四邊形OAMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱
正方形
,
長方形

(2)如下圖(1),請你在圖中畫出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:若一個四邊形ABCD中AC⊥BD,BD平分AC,則稱這個四邊形為箏形四邊形.
(1)小明說:“箏形四邊形一定是菱形”.你認(rèn)為小明的說法是否正確?若正確請說明理由;若不正確,請舉個反例說明.
(3)在箏形ABCD中,AD=CD,AB=BC,若∠ADC=∠ABC,tan∠DAC=1.求證:箏形ABCD是正方形.

查看答案和解析>>

同步練習(xí)冊答案