【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經過點C.過點C作⊙O的切線交AB的延長線于點P.點D為圓上一點,且 = ,弦AD的延長線交切線PC于點E,連接BC.
(1)判斷OB和BP的數量關系,并說明理由;
(2)若⊙O的半徑為2,求AE的長.
【答案】
(1)
解:OB=BP.
理由:連接OC,
∵PC切⊙O于點C,
∴∠OCP=90°,
∵OA=OC,∠OAC=30°,
∴∠OAC=∠OCA=30°,
∴∠COP=60°,
∴∠P=30°,
在Rt△OCP中,OC= OP=OB=BP
(2)
解:
由(1)得OB= OP,
∵⊙O的半徑是2,
∴AP=3OB=3×2=6,
∵ = ,
∴∠CAD=∠BAC=30°,
∴∠BAD=60°,
∵∠P=30°,
∴∠E=90°,
在Rt△AEP中,AE= AP= ×6=3.
【解析】(1)首先連接OC,由PC切⊙O于點C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根據直角三角形中30°角所對的直角邊等于斜邊的一半,證得OB=BP;(2)由(1)可得OB= OP,即可求得AP的長,又由 = ,即可得∠CAD=∠BAC=30°,繼而求得∠E=90°,繼而在Rt△AEP中求得答案.
科目:初中數學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解學生孝敬父母的情況(選項:A為父母洗一次腳;B幫父母做一次家務;C給父母買一件禮物;D其它),在全校范圍內隨機抽取了若干名學生進行調查,得到如下圖表(部分信息未給出):
根據以上信息解答下列問題:
(1)這次被調查的學生有多少人?
(2)求表中m,n,p的值,并補全條形統計圖.
(3)該校有1600名學生,估計該校全體學生中選擇B選項的有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=,OC=,則另一直角邊BC的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有箱桔子,以每箱千克為標準,稱重記錄如下(單位:千克,超過標準的千克數為正數,不足標準的千克數記為負數):,,,,,,,.
稱得的箱總質量與標準總質量相比超過或不足多少千克?
若每箱桔子進價元/千克,售價元/千克,則這箱桔子全部售出共盈利多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】動點A從原點出發(fā)向數軸負方向運動,同時,動點B也從原點出發(fā)向數軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).
(1)求兩個動點運動的速度;
(2)A、B兩點運動到3秒時停止運動,請在數軸上標出此時A、B兩點的位置;
(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數軸上運動,運動的速度不變,運動的方向不限,問:經過幾秒鐘,A、B兩點之間相距4個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南中國海是中國固有領海,我漁政船經常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據測算,漁政船距A島的距離AB長為10海里.此時位于A島正西方向C處的我漁船遭到某國軍艦的襲擾,船長發(fā)現在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號.漁政船接警后,立即沿BC航線以每小時30海里的速度前往救助,問漁政船大約需多少分鐘能到達漁船所在的C處?(參考數據:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長方形OABC,O為平面直角坐標系的原點,OA=5,OC=3,點B在第三象限.
(1)求點B的坐標;
(2)如圖1,若過點B的直線BP與長方形OABC的邊交于點P,且將長方形OABC的面積分為1:4兩部分,求點P的坐標;
(3)如圖2,M為x軸負半軸上一點,且∠CBM=∠CMB,N是x軸正半軸上一動點,∠MCN的平分線CD交BM的延長線于點D,在點N運動的過程中,的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com