(2012•蘇州)已知扇形的圓心角為45°,弧長(zhǎng)等于
π2
,則該扇形的半徑為
2
2
分析:根據(jù)弧長(zhǎng)公式l=
nπr
180
可以求得該扇形的半徑的長(zhǎng)度.
解答:解:根據(jù)弧長(zhǎng)的公式l=
nπr
180
,知
r=
180l
=
180×
π
2
45π
=2,即該扇形的半徑為2.
故答案是:2.
點(diǎn)評(píng):本題考查了弧長(zhǎng)的計(jì)算.解題時(shí),主要是根據(jù)弧長(zhǎng)公式列出關(guān)于半徑r的方程,通過(guò)解方程即可求得r的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘇州)已知在平面直角坐標(biāo)系中放置了5個(gè)如圖所示的正方形(用陰影表示),點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,則點(diǎn)A3到x軸的距離是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘇州)如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動(dòng),移動(dòng)開(kāi)始前點(diǎn)A與點(diǎn)F重合,在移動(dòng)過(guò)程中,邊AD始終與邊FG重合,連接CG,過(guò)點(diǎn)A作CG的平行線交線段GH于點(diǎn)P,連接PD.已知正方形ABCD的邊長(zhǎng)為1cm,矩形EFGH的邊FG,GH的長(zhǎng)分別為4cm,3cm,設(shè)正方形移動(dòng)時(shí)間為x(s),線段GP的長(zhǎng)為y(cm),其中0≤x≤2.5.
(1)試求出y關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)y=3時(shí)相應(yīng)x的值;
(2)記△DGP的面積為S1,△CDG的面積為S2.試說(shuō)明S1-S2是常數(shù);
(3)當(dāng)線段PD所在直線與正方形ABCD的對(duì)角線AC垂直時(shí),求線段PD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘇州)已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=(x-1)2+1的圖象上,若x1>x2>1,則y1
y2(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘇州)已知太陽(yáng)的半徑約為696000000m,696000000這個(gè)數(shù)用科學(xué)記數(shù)法表示為
6.96×108
6.96×108

查看答案和解析>>

同步練習(xí)冊(cè)答案