【題目】函數(shù)f(x)=ex(﹣x2+2x+a)在區(qū)間[a,a+1]上單調(diào)遞增,則實(shí)數(shù)a的最大值為 .
【答案】
【解析】解:f(x)=ex(﹣x2+2x+a), f′(x)=ex(﹣x2+a+2),
若f(x)在[a,a+1]上單調(diào)遞增,
則﹣x2+a+2≥0在[a,a+1]恒成立,
即a+2≥x2在[a,a+1]恒成立,
①a+1<0即a<﹣1時(shí),y=x2在[a,a+1]遞減,
y=x2的最大值是y=a2 ,
故a+2≥a2 , 解得:a2﹣a﹣2≤0,解得:﹣1<a<2,不合題意,舍;
②﹣1≤a≤0時(shí),y=x2在[a,0)遞減,在(0,a+1]遞增,
故y=x2的最大值是a2或(a+1)2 ,
③a>0時(shí),y=x2在[a,a+1]遞增,y的最大值是(a+1)2 ,
故a+2≥(a+1)2 , 解得:0<a≤ ,
則實(shí)數(shù)a的最大值為: ,
綜上,a的最大值是 ,
所以答案是: .
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,正比例函數(shù)y=ax的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(3,2)
(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時(shí),反比例函數(shù)的值大于正比例函數(shù)的值?
(3)點(diǎn)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線AC∥y軸交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017赤峰)已知平行四邊形ABCD.
(1)尺規(guī)作圖:作∠BAD的平分線交直線BC于點(diǎn)E,交DC延長(zhǎng)線于點(diǎn)F(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)在(1)的條件下,求證:CE=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)經(jīng)公司以30元/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,為了得到日銷售量p(千克)與銷售價(jià)格x(元/千克)之間的關(guān)系,經(jīng)過(guò)市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:
銷售價(jià)格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定p與x之間的函數(shù)表達(dá)式;
(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價(jià)格,才能使日銷售利潤(rùn)最大?
(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費(fèi)用,當(dāng)40≤x≤45時(shí),農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤(rùn)﹣日支出費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.
①求證:△DAE≌△DCF;
②求證:△ABG∽△CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,橢圓 的右頂點(diǎn)和上頂點(diǎn)分別為點(diǎn)A,B,M是線段AB的中點(diǎn),且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內(nèi)接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面積為S1 , S2 , S3三部分,則S1:S2:S3=( )
A.1:2:3
B.1:4:9
C.1:3:5
D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為10cm,弦AB∥CD,AB=12cm,CD=16cm,則AB和CD的距離為( )
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長(zhǎng)線于點(diǎn)E,AB=3,EF=0.8,AF=2.4.求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com