【題目】(3分)如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時,測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=8米,點A、B、C、D、F、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長為 米.(結果保留根號)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角邊長為的等腰直角三角形與邊長為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,設穿過時間為t,兩圖形重合部分的面積為S,則S關于t的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)準備在甲乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5箭,他們的總成績(單位:環(huán))相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,并計算了甲成績的平均數(shù)和方差(見小宇的作業(yè)).
小宇的作業(yè):
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
小宇的作業(yè):
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙兩人射箭成績統(tǒng)計表
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成績 | 9 | 4 | 7 | 4 | 6 |
乙成績 | 7 | 5 | 7 | a | 7 |
(1)a=________,乙=________;
(2)請完成圖中表示乙成績變化情況的折線;
(3)①觀察圖,可看出________的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計算方法,計算乙成績的方差,并驗證你的判斷.
②請你從平均數(shù)和方差的角度分析,誰將被選中.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在海洋上有一近似于四邊形的島嶼,其平面如圖甲,小明據(jù)此構造處該島的一個數(shù)學模型(如圖乙四邊形ABCD),AC是四邊形島嶼上的一條小溪流,其中∠B=90°,AB=BC=5千米,CD=干米,AD=4干米.
(1)求小溪流AC的長.
(2)求四邊形ABCD的面積.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為
A. 4 B. C. 6 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一塊三角板放在直角坐標系第一象限內(nèi),其中30°角的頂點A落在y軸上,直角頂點C落在x軸的(,0)處,∠ACO=60°,點D為AB邊上中點,將△ABC沿x軸向右平移,當點A落在直線y=x﹣3上時,線段CD掃過的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求證:AE是 O的切線;
(2)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是的邊的延長線上一點,點是邊上的一點(不與點重合).以、為鄰邊作平行四邊形,又(點、在直線的同側),如果,那么的面積與面積的比值為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com