如圖,在直角梯形ABCD中,∠A=∠D=90°,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:
(1)四邊形CGEF的面積S關(guān)于x的函數(shù)表達式和x的取值范圍;
(2)面積S是否存在著最小值?若存在,求其最小值;若不存在,請說明理由;
(3)當x為何值時,S的數(shù)值等于x的4倍.

解:(1)S四邊形CGEF=S梯形ABCD-S△EGD-S△EFA-S△BCF
=×(3+6)×4-
=x2-7x+18
∵x>0,且3-x>0,4-x>0,6-x>0,
∴0<x<3
則所求的函數(shù)表達式是S=x2-7x+18(0<x<3)

(2)S=x2-7x+18=,
由于x=不在x的取值范圍內(nèi),而x也取不到0,
則面積S的最小值不存在.

(3)由題意,令S=4x,代入(1)題中求得的S關(guān)于x的表達式,
得x2-7x+18=4x,解方程,得x1=2,x2=9
∵0<x<3,∴x2=9不合題意.
則當x=2時,S的數(shù)值等于x的4倍.
分析:(1)首先可尋找四邊形CGEF與題中圖形之間的關(guān)系,讀圖可得,S四邊形CGEF=S梯形ABCD-S△EGD-S△EFA-S△BCF,據(jù)此即可求出四邊形CGEF的面積S關(guān)于x的函數(shù)表達式,再由AB、CD、AD的值求取x的取值范圍;
(2)把(1)中所得的二次函數(shù)化為頂點式的形式,再根據(jù)實際情況求解;
(3)由題意,可得x2-7x+18=4x,解方程即可.
點評:此題考查二次函數(shù)的具體應用,以及最值的求法,難度中等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案