精英家教網(wǎng)如圖,梯形中ABCD中,∠DBC=30°,DB=12
3
,AC=2
43
,EF為梯形的中位線.求梯形的面積及EF的長(zhǎng).
分析:此題可作輔助線:過D作DM∥AC,DM與BC的延長(zhǎng)線交于點(diǎn)M,作DG⊥BM于G.則構(gòu)造了一個(gè)平行四邊形,且把梯形的面積轉(zhuǎn)化為三角形的面積.根據(jù)平行四邊形的性質(zhì),得對(duì)邊相等.再根據(jù)30°所對(duì)的直角邊是斜邊的一半,求得DG的長(zhǎng).再根據(jù)勾股定理分別求得BG和MG的長(zhǎng).DG+MG即是梯形的上下底的和.進(jìn)一步求其面積.
解答:精英家教網(wǎng)解:過D作DM∥AC,DM與BC的延長(zhǎng)線交于點(diǎn)M,作DG⊥BM于G
∵四邊形ACMD為平行四邊形
∴AD=CM,AC=DM
在Rt△DBG中,∠DBG=30°,DB=12
3

DG=6
3
,BG=18
在Rt△DGM中,GM=
DM2-DG2
=
172-108
=8

∴BM=BG+GM=26,又BM=BC+CM=BC+AD
EF=
1
2
(AD+
BC)=
1
2
BM
=13,
S梯形ABCD=
1
2
(AD
+BC)×DG=
1
2
×26×6
3
=78
3
點(diǎn)評(píng):注意梯形中又一條常見的輔助線:平移對(duì)角線.這條輔助線構(gòu)造了一個(gè)平行四邊形和一個(gè)由兩條對(duì)角線和上下底的和組成的一個(gè)三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖:梯形中ABCD,AD∥BC,AB=CD=5,BC=6,∠C=60°,直線MN為梯形ABCD的對(duì)稱軸,P為MN上一點(diǎn),Q為CD上一點(diǎn),那么PQ+CQ的最小值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖:梯形中ABCD,AD∥BC,AB=CD=5,BC=6,∠C=60°,直線MN為梯形ABCD的對(duì)稱軸,P為MN上一點(diǎn),Q為CD上一點(diǎn),那么PQ+CQ的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形中ABCD中,∠DBC=30°,數(shù)學(xué)公式,數(shù)學(xué)公式,EF為梯形的中位線.求梯形的面積及EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年山西省晉中市太谷縣任村鄉(xiāng)二中中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖:梯形中ABCD,AD∥BC,AB=CD=5,BC=6,∠C=60°,直線MN為梯形ABCD的對(duì)稱軸,P為MN上一點(diǎn),Q為CD上一點(diǎn),那么PQ+CQ的最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案