【題目】如圖,B,D分別在CF和EF上,CB=ED,CA=EA,∠C=∠E,連接AB,AD.
(1)求證:AB=AD;
(2)求證:BF=DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c過原點O和B(﹣4,4),且對稱軸為直線x=.
(1)求拋物線的函數(shù)表達(dá)式;
(2)D是直線OB下方拋物線上的一動點,連接OD,BD,在點D運動過程中,當(dāng)△OBD面積最大時,求點D的坐標(biāo)和△OBD的最大面積;
(3)如圖2,若點P為平面內(nèi)一點,點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,直接寫出滿足△POD∽△NOB的點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A(1,n1),點B(2,n2)在一次函數(shù)y1=k1x+b1圖像上:點C(3,n3),點D(4,n4)在一次函數(shù)y2=k2x+b2圖像上,y1 和y2圖像交點坐標(biāo)是(m,n).若n4<n1<n3<n2,則下列說法:①k1>0,k2<0;②k1<0,k2>0;③1<m<3;④2<m<4,正確的是____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連結(jié)BF,CE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BF∥CE;④CE=BF.其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,F為EC的中點,連接AF.寫出AF與BD的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=20°,點D,E分別在射線BC,BA上,且BD=3,BE=3,點M,N分別是射線BA,BC上的動點,求DM+MN+NE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,燈桿AB與墻MN的距離為18米,小麗在離燈桿(底部)9米的D處測得其影長DE為3m,設(shè)小麗身高為1.6m.
(1)求燈桿AB的高度;
(2)小麗再向墻走7米,她的影子能否完全落在地面上?若能,求此時的影長;若不能,求落在墻上的影長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=3,M為邊BC上的點,連接AM.如果將△ABM沿直線AM翻折后,點B恰好落在邊AC的中點處,那么點M到AC的距離是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com