(2012•鎮(zhèn)江模擬)某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系:
x 60 65 70 75 80
y 60 55 50 45 40
(1)求銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;并求出銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷(xiāo)售單價(jià)的范圍.
分析:(1)先利用待定系數(shù)法求出銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式y(tǒng)=-x+120;由于成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,可得到x的取值范圍為60≤x≤87;
(2)根據(jù)總利潤(rùn)等于每一件的利潤(rùn)乘以銷(xiāo)售總量得到W=(x-60)•y,把y=-x+120代入得到W=(x-60)(-x+120)=-x2+180x-7200(60≤x≤87);然后配成頂點(diǎn)式為W=-(x-90)2+900,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)x<90時(shí),W隨x的增大而增大,則x=87時(shí),W有最大值,其最大值=-(87-90)2+900=891;
(3)令W=500,則-(x-90)2+900=500,解得x1=70,x2=110,而當(dāng)x<90時(shí),W隨x的增大而增大,即可得到當(dāng)銷(xiāo)售單價(jià)的范圍為70(元)≤x≤87(元)時(shí),該商場(chǎng)獲得利潤(rùn)不低于500元.
解答:解:(1)設(shè)售量y(件)與銷(xiāo)售單價(jià)x(元)的一次函數(shù)關(guān)系為y=kx+b(k≠0),
把(60,60)、(80,40)代入,
60k+b=60
80k+b=40
,
解得
k=-1
b=120

∴銷(xiāo)售量y與銷(xiāo)售單價(jià)x的函數(shù)關(guān)系式y(tǒng)=-x+120;
∵成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,即不高于60(1+45%),
∴60≤x≤87;
(2)W=(x-60)•y
=(x-60)(-x+120)
=-x2+180x-7200(60≤x≤87);
W=-(x-90)2+900,
∵a=-1<0,
∴當(dāng)x<90時(shí),W隨x的增大而增大,
∴x=87時(shí),W有最大值,其最大值=-(87-90)2+900=891,
即銷(xiāo)售單價(jià)定為87元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是891元;

(3)令W=500,則-(x-90)2+900=500,解得x1=70,x2=110,
∵當(dāng)x<90時(shí),W隨x的增大而增大,
∴當(dāng)銷(xiāo)售單價(jià)的范圍為70(元)≤x≤87(元)時(shí),該商場(chǎng)獲得利潤(rùn)不低于500元.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用:先根據(jù)實(shí)際問(wèn)題得到二次函數(shù)的解析式y(tǒng)=ax2+bx+c(a≠0),再得到頂點(diǎn)式y(tǒng)=a(x+
b
2a
2+
4ac-b2
4a
,當(dāng)a<0,二次函數(shù)有最大值,即x=-
b
2a
時(shí),y的最大值為
4ac-b2
4a
,然后利用二次函數(shù)的性質(zhì)解決有關(guān)問(wèn)題.也考查了待定系數(shù)法求函數(shù)的解析式以及一次函數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)在8×8的正方形網(wǎng)格中建立如圖所示坐標(biāo)系,已知A(2,4),B(4,2).
(1)在第一象限內(nèi)標(biāo)出一個(gè)格點(diǎn)C,使得點(diǎn)C與線段AB組成一個(gè)以AB為底,且腰長(zhǎng)為無(wú)理數(shù)的等腰三角形.
(2)填空:C點(diǎn)的坐標(biāo)是
(1,1)
(1,1)
,△ABC的面積是
4
4
;
(3)請(qǐng)?zhí)骄浚涸趚軸上是否存在這樣的點(diǎn)P,使以點(diǎn)A、B、P為頂點(diǎn)的三角形的面積等于△ABC的面積?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)(可以在網(wǎng)格外);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)如圖,矩形ABCD中,AB=6cm,AD=3cm,CE=2cm,動(dòng)點(diǎn)P從A出發(fā)以每秒2cm的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)A出發(fā)以每秒1cm的速度向終點(diǎn)E運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.解答下列問(wèn)題:
(1)當(dāng)0<t≤3時(shí),以A、P、Q為頂點(diǎn)的三角形能與△ADE相似嗎?(不必說(shuō)理由)
(2)連接DQ,試求當(dāng)t為何值時(shí)?△ADQ為等腰三角形.
(3)求t為何值時(shí)?直線PQ平分矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)如圖,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測(cè)得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點(diǎn)P的鉛直高度.(測(cè)傾器高度忽略不計(jì),結(jié)果保留根號(hào)形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)已知∠A的補(bǔ)角是120°,則tanA=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)2011年年末我國(guó)總?cè)丝谝呀?jīng)達(dá)到134735萬(wàn)人,這個(gè)數(shù)字用科學(xué)記數(shù)法可以表示為
1.35×109
1.35×109
人(保留3位有效數(shù)字).

查看答案和解析>>

同步練習(xí)冊(cè)答案