如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD=5,則四邊形ABCD的面積為   
【答案】分析:作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),求出∠BAC=∠DAE,根據(jù)AAS證△ABC≌△ADE,推出BC=DE,AC=AE,設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,求出CF=3a,
在Rt△CDF中,由勾股定理得出(3a)2+(4a)2=52,求出a=1,根據(jù)S四邊形ABCD=S梯形ACDE求出梯形ACDE的面積即可.
解答:解:作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),
∵∠BAD=∠CAE=90°,
即∠BAC+∠CAD=∠CAD+∠DAE,
∴∠BAC=∠DAE,
在△ABC和△ADE中
,
∴△ABC≌△ADE(AAS),
∴BC=DE,AC=AE,
設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得:CF2+DF2=CD2,
即(3a)2+(4a)2=52,
解得:a=1,
∴S四邊形ABCD=S梯形ACDE=×(DE+AC)×DF
=×(a+4a)×4a
=10a2
=10.
故答案為:10.
點(diǎn)評(píng):本題考查了勾股定理,全等三角形的性質(zhì)和判定,梯形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵是正確作輔助線,題目綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案