【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DCAB于點(diǎn)F,則△ACF與△BDF的周長(zhǎng)之和為 ___________

【答案】42

【解析】

根據(jù)將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,可得△ABC≌△BDE,CBD=60°,BD=BC=12cm,從而得到△BCD為等邊三角形,得到CD=BC=CD=12cm.在RtACB,利用勾股定理得到AB=13,所以△ACF與△BDF的周長(zhǎng)之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答

∵將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,∴△ABC≌△BDE,CBD=60°,BD=BC=12cm,∴△BCD為等邊三角形,CD=BC=CD=12cm.在RtACB,AB==13ACF與△BDF的周長(zhǎng)之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42cm).

故答案為:42

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°,AB=AC,分別過B、C兩點(diǎn)作過點(diǎn)A的直線l的垂線,垂足為D、E;

1)如圖1,當(dāng)D、E兩點(diǎn)在直線BC的同側(cè)時(shí),猜想,BDCE、DE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=ACD、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3)如圖3,∠BAC=90°,AB=25,AC=35.點(diǎn)PB點(diǎn)出發(fā)沿B→A→C路徑向終點(diǎn)C運(yùn)動(dòng);點(diǎn)QC點(diǎn)出發(fā)沿C→A→B路徑向終點(diǎn)B運(yùn)動(dòng).點(diǎn)PQ分別以每秒23個(gè)單位的速度同時(shí)開始運(yùn)動(dòng),只要有一點(diǎn)到達(dá)相應(yīng)的終點(diǎn)時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng);在運(yùn)動(dòng)過程中,分別過PQPF⊥lFQG⊥lG.問:點(diǎn)P運(yùn)動(dòng)多少秒時(shí),△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥BC,AB⊥BC,AB=3,點(diǎn)E為射線BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題

(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b.
當(dāng)點(diǎn)A位于時(shí),線段AC的長(zhǎng)取得最大值,且最大值為(用含a,b的式子表示)
(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請(qǐng)找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長(zhǎng)的最大值.

(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點(diǎn).

(1)求點(diǎn)A、B的坐標(biāo);

(2)點(diǎn)D為y軸正半軸上一點(diǎn),若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);

(3)如圖 3,(也可以利用圖 1)①求點(diǎn)F的坐標(biāo);②坐標(biāo)軸上是否存在點(diǎn)P,使得△ABP和△ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.

(1)求證:BD=AE;

(2)若△ACB不動(dòng),把△DCE繞點(diǎn)C旋轉(zhuǎn)到使點(diǎn)D落在AB邊上,如圖2所示,問上述結(jié)論還成立嗎?若成立,給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD=6m,AD=8m,ADC=90°,BC=24m,AB=26m.圖中陰影部分的面積=_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下面是利用尺規(guī)作∠AOB的角平分線OC的作法:

①以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交OA、OB于點(diǎn)D,E;

②分別以點(diǎn)D,E為圓心,以大于DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)部交于點(diǎn)C;

③作射線OC,則射線OC就是∠AOB的平分線.

以上用尺規(guī)作角平分線時(shí),用到的三角形全等的判定方法是( 。

A. SSS B. SAS

C. ASA D. AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:
①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,
其中正確的結(jié)論的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案