如圖,⊙O的直徑AB=4,C、D為圓周上兩點(diǎn),且四邊形OBCD是菱形,過點(diǎn)D的直線EF∥AC,交BA、BC的延長(zhǎng)線于點(diǎn)E、F.

【小題1】求證:EF是⊙O的切線
【小題2】求DE的長(zhǎng)
p;【答案】
【小題1】證明:∵AB是⊙O的直徑,
∴∠ACB=90°.         ……… 1分
∵四邊形OBCD是菱形,
∴OD//BC.
∴∠1=∠ACB=90°.    ……… 2分
∵EF∥AC,
∴∠2=∠1 =90°.      ……… 3分
∵OD是半徑,
∴EF是⊙O的切線.     ……… 4分
【小題2】解:連結(jié)OC,
 
∵直徑AB=4,∴半徑OB=OC=2.
∵四邊形OBCD是菱形,∴OD=BC=OB=OC=2.
∴∠B=60°.                                         ……… 7分
∵OD//BC,∴∠EOD=∠B= 60°.                      ……… 8分
在Rt△EOD中,DE=OD•tan∠EOD=2 tan60°=2.     ……… 9分解析:
p;【解析】略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點(diǎn),過點(diǎn)B作BF∥CD交AD的延長(zhǎng)線于
點(diǎn)F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長(zhǎng).(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點(diǎn),連PC,PA,PD,PB,下列結(jié)論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長(zhǎng);
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點(diǎn),CD=6cm,則直徑AB的長(zhǎng)是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習(xí)冊(cè)答案